cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380596 Numbers with embedded palindromes as proper substrings of the term.

This page as a plain text file.
%I A380596 #22 Mar 06 2025 11:52:49
%S A380596 100,110,111,112,113,114,115,116,117,118,119,122,133,144,155,166,177,
%T A380596 188,199,200,211,220,221,222,223,224,225,226,227,228,229,233,244,255,
%U A380596 266,277,288,299,300,311,322,330,331,332,333,334,335,336,337,338,339,344,355,366,377,388,399
%N A380596 Numbers with embedded palindromes as proper substrings of the term.
%C A380596 An embedded palindrome is a substring of at least two contiguous digits (since a single digit is trivially a palindrome). E.g., 121 is a palindrome, but has no embedded palindromes; 110 has the embedded palindrome "11".
%C A380596 Alternatively, k contains a proper substring of the form dd or ded, where d and e are single decimal digits (i.e., a length-2 or -3 palindrome). - _Michael S. Branicky_, Feb 08 2025
%e A380596 100 is a term, since "00" is a palindrome; 1001 is a term for the same reason.
%e A380596 1020 is a term, since "020" is a palindrome; 10201 is a term for the same reason.
%o A380596 (Python)
%o A380596 from itertools import combinations
%o A380596 def get_all_substrings(string):
%o A380596     length = len(string) + 1
%o A380596     return [string[x:y] for x, y in combinations(range(length), r=2)]
%o A380596 def is_palindrome(n):
%o A380596     return str(n) == str(n)[::-1]
%o A380596 def ok(n):
%o A380596     subsets = get_all_substrings(str(n))
%o A380596     subsets = [subset for subset in subsets if is_palindrome(subset) and len(subset)>1 and len(subset)<len(str(n))]
%o A380596     return len(subsets)>0
%o A380596 print([k for k in range (100,400) if ok(k)])
%o A380596 (Python)
%o A380596 def ok(n):
%o A380596     s = str(n)
%o A380596     return any(p == p[::-1] and len(p) < len(s) for p in (s[i:i+j] for j in (2, 3) for i in range(len(s)-j+1)))
%o A380596 print([k for k in range(400) if ok(k)]) # _Michael S. Branicky_, Feb 08 2025
%Y A380596 Cf. A002113.
%Y A380596 Significant overlap with A044821 for terms below 1000.
%K A380596 nonn,base
%O A380596 1,1
%A A380596 _James S. DeArmon_, Jan 27 2025