A380599 Decimal expansion of the smallest number greater than 1 whose binary and ternary expansions have the same succession of digits.
9, 3, 8, 2, 7, 9, 2, 2, 4, 8, 5, 7, 3, 0, 9, 2, 7, 2, 7, 5, 3, 6, 9, 6, 6, 3, 3, 6, 4, 2, 8, 3, 3, 1, 2, 2, 6, 3, 2, 0, 2, 9, 4, 1, 8, 6, 1, 0, 0, 8, 3, 0, 7, 4, 7, 4, 3, 8, 3, 4, 0, 1, 1, 5, 4, 8, 6, 1, 1, 4, 4, 3, 0, 2, 8, 9, 5, 3, 0, 8, 6, 6, 0, 5, 7, 7, 8, 9, 6, 8, 1, 8, 4, 3, 3, 3, 6, 5, 8, 1, 0, 6, 3, 9, 7
Offset: 1
Examples
9.3827922485730927275369663364283312263202941861008307474383... In bases 2 and 3 respectively (being the same apart from position of the radix point), 1001.011000011111111010101100001111001... 100.1011000011111111010101100001111001...
Crossrefs
Cf. A379651.
Programs
-
Mathematica
f[b1_, b2_, d_] := Block[{a = b1, b = b2, i = 0, j, k = 1, n = 2}, If[a > b, {a, b} = {b, a}]; While[j = IntegerLength[n, b]; Take[ IntegerDigits[n, a], j] != Take[ IntegerDigits[n, b], j] (* IntegerDigits[n,b,j] does not work. Why not? *), n++]; While[j + k < d + 2, i = 0; While[n = n + i/b^k; RealDigits[n, a, j + k][[1]] != RealDigits[n, b, j + k][[1]], i++]; k++]; N[n, 105]]; f[2, 3, 300]
Comments