This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A380611 #34 Jan 29 2025 22:15:35 %S A380611 1,1,3,1,10,16,1,35,135,40,45,1,126,896,875,756,375,96,1,462,5250, %T A380611 10206,8400,2450,14336,2800,875,1701,175,1,1716,28512,90552,74250, %U A380611 65856,257250,48000,74088,55566,102900,8100,10976,5488,288,1,6435,147147,686400,567567,931392,3244032,606375,194040,2910600,1448832,2673000,202125,666792,846720,1029000,491520,19845,24696,65856,14400,441,1 %N A380611 Irregular triangle read by rows: T(r,c) is the product of the number of standard Young tableaux (A117506) and the number of semistandard Young tableaux (A262030) for partitions of r. %C A380611 Partitions are generated in reverse lexicographic order. %C A380611 Remark that A262030 uses Abramowitz-Stegun (A-St) order. %C A380611 Sum of row r equals r^r for r > 0 (Robinson-Schensted correspondence). %H A380611 Wikipedia, <a href="https://en.wikipedia.org/wiki/Young_tableau">Young tableau</a> %e A380611 Triangle begins: %e A380611 1; %e A380611 1; %e A380611 3, 1; %e A380611 10, 16, 1; %e A380611 35, 135, 40, 45, 1; %e A380611 126, 896, 875, 756, 375, 96, 1; %e A380611 462, 5250, 10206, 8400, 2450, 14336, 2800, 875, 1701, 175, 1; %e A380611 ... %e A380611 Fourth row is 1*35, 3*45, 2*20, 3*15, 1*1 with sum 256 = 4^4. %t A380611 Needs["Combinatorica`"]; %t A380611 hooklength[par_?PartitionQ]:=Table[Count[par,q_/;q>=j]+1-i+par[[i]]-j,{i,Length[par]},{j,par[[i]]}]; %t A380611 countSYT[par_?PartitionQ]:=Tr[par]!/Times@@Flatten[hooklength[par]]; %t A380611 content[par_?PartitionQ]:=Table[j-i,{i,Length[par]},{j,par[[i]]}]; %t A380611 countSSYT[par_?PartitionQ,t_Integer_]:=Times@@((t+Flatten[content[par]])/Flatten[hooklength[par]]); %t A380611 Table[countSYT[par] countSSYT[par,n],{n,8},{par,IntegerPartitions[n]}] %Y A380611 Row sums give A000312. %Y A380611 Row lengths give A000041. %Y A380611 Leftmost column gives A088218. %Y A380611 Cf. A047874, A059304, A365643, A262030, A117506. %K A380611 nonn,tabf %O A380611 0,3 %A A380611 _Wouter Meeussen_, Jan 28 2025