This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A380615 #12 Jan 28 2025 20:51:01 %S A380615 1,1,1,2,2,1,5,8,5,2,18,38,34,14,3,105,275,288,154,42,6,902,2614,3102, %T A380615 1959,705,140,14,9749,30346,39242,27898,11956,3142,473,34,127072, %U A380615 415360,573654,446078,217000,68544,13886,1670,95,1915951,6513999,9484003,7911844,4230802,1523176,373188,60614,5969,280 %N A380615 Triangle read by rows: T(n,k) is the number of sensed combinatorial maps with n edges and k vertices, 1 <= k <= n + 1. %C A380615 By duality, also the number of sensed combinatorial maps with n edges and k faces. %H A380615 Andrew Howroyd, <a href="/A380615/b380615.txt">Table of n, a(n) for n = 0..1325</a> (rows 0..50) %e A380615 Triangle begins: %e A380615 n\k | 1 2 3 4 5 6 7 8 9 %e A380615 ----+---------------------------------------------------------------- %e A380615 0 | 1 %e A380615 1 | 1, 1 %e A380615 2 | 2, 2, 1; %e A380615 3 | 5, 8, 5, 2; %e A380615 4 | 18, 38, 34, 14, 3; %e A380615 5 | 105, 275, 288, 154, 42, 6; %e A380615 6 | 902, 2614, 3102, 1959, 705, 140, 14; %e A380615 7 | 9749, 30346, 39242, 27898, 11956, 3142, 473, 34; %e A380615 8 | 127072, 415360, 573654, 446078, 217000, 68544, 13886, 1670, 95; %e A380615 ... %o A380615 (PARI) %o A380615 InvEulerMTS(p)={my(n=serprec(p, x)-1, q=log(p), vars=variables(p)); sum(i=1, n, moebius(i)*substvec(q + O(x*x^(n\i)), vars, apply(v->v^i, vars))/i)} %o A380615 b(k,r)={if(k%2, if(r%2, 0, my(j=r/2); k^j*(2*j)!/(j!*2^j)), sum(j=0, r\2, binomial(r, 2*j)*k^j*(2*j)!/(j!*2^j)))} %o A380615 C(k,r,y)={my(p=sumdiv(k,d,eulerphi(k/d)*y^d)/k); sum(i=0, r, abs(stirling(r,i,1))*p^i)/r!} %o A380615 S(n,k,y)={sum(r=0, 2*n\k, if(k*r%2==0, x^(k*r/2)*b(k,r)*C(k,r,y)), O(x*x^n))} %o A380615 G(n,y='y)={prod(k=1, 2*n, S(n,k,y))} %o A380615 T(n)={[Vecrev(p/y) | p<-Vec(y+InvEulerMTS(G(n)))]} %o A380615 { my(A=T(10)); for(i=1, #A, print(A[i])) } %Y A380615 Row sums are A170946. %Y A380615 Main diagonal is A002995(n+1). %Y A380615 Second diagonal gives A380237. %Y A380615 Columns 1..3 are A007769, A380618, A380619. %Y A380615 Cf. A053979 (rooted), A379430 (planar), A380616 (unsensed), A380617 (achiral). %K A380615 nonn,tabl %O A380615 0,4 %A A380615 _Andrew Howroyd_, Jan 28 2025