This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A380649 #6 Feb 03 2025 21:35:27 %S A380649 1,4,3,8,7,6,13,12,11,10,19,18,17,16,15,26,25,24,23,22,21,34,33,32,31, %T A380649 30,29,28,43,42,41,40,39,38,37,36,53,52,51,50,49,48,47,46,45,64,63,62, %U A380649 61,60,59,58,57,56,55,76,75,74,73,72,71,70,69,68,67,66 %N A380649 Rectangular array ((-1)*D(i,j,1,2)) read by descending antidiagonals: D(i,j,s,n) denotes the determinant of the matrix described in Comments. %C A380649 Suppose that (m(i,j)) is a rectangular array of infinitely many rows and infinitely many columns. For integers s>=1 and n>=1, let M(i,j,s,n) be the nXn matrix (m(i+h*s,j+k*s)), where h=0..n-1, k=0..n-1. %C A380649 Let D(i,j,s,n) and P(i,j,s,n) denote the determinant and permanent of M(i,j,s,n), respectively. For A380649, we take (m(i,j)) to be the natural number array (see A000027, A185787, and A144112), and ((-1)*D(i,j,1,2)) is as shown below in Example. %C A380649 * D(i,j,1,1) = M(i,j,1,1) = m(i,j) has linearly recurrent row sequences, all with signature (3,-3,1). %C A380649 * D(i,j,1,2) has linearly recurrent row sequences, all with signature (3,-3,1). %C A380649 * (-1)*D(i,j,s,3) is the constant array in which every term is s^6, for all i,j,s. %C A380649 * D(i,j,s,n) is the constant 0 array for all n>=4, for all i,j,s. %C A380649 * P(i,j,s,n) depends only on n, and the rows all have the following linear recurrence signature: %C A380649 b(2n+1,1), - b(2n+1,2), b(2n+1-3),..., -(2n+1,2n), 1, where b=binomial. %C A380649 ((-1)*D(i,j,1,2)) includes, exactly once, every positive integer not in A000096. The order array of ((-1)*D(i,j,1,2)) is the array in Example in A038722; see A333029 for the definition of order array. %e A380649 Corner of (-1)*D(i,j,1,2): %e A380649 1 4 8 13 19 26 34 43 53 64 76 89 %e A380649 3 7 12 18 25 33 42 52 63 75 88 102 %e A380649 6 11 17 24 32 41 51 62 74 87 101 116 %e A380649 10 16 23 31 40 50 61 73 86 100 115 131 %e A380649 15 22 30 39 49 60 72 85 99 114 130 147 %e A380649 21 29 38 48 59 71 84 98 113 129 146 164 %e A380649 28 37 47 58 70 83 97 112 128 145 163 182 %e A380649 36 46 57 69 82 96 111 127 144 162 181 201 %e A380649 45 56 68 81 95 110 126 143 161 180 200 221 %e A380649 55 67 80 94 109 125 142 160 179 199 220 242 %e A380649 66 79 93 108 124 141 159 178 198 219 241 264 %e A380649 78 92 107 123 140 158 177 197 218 240 263 287 %e A380649 m(1,1) = 1, so M(1,1,1,2) is the matrix having (row 1) = (1,2) and (row 2) = (3,5), so (-1)*D(1,1,1,2) = -(1*5-2*3) = 1. %t A380649 s = 1; n = 2; z = 12; %t A380649 r[n_, k_] := n + (n + k - 2)*(n + k - 1)/2; %t A380649 Grid[Table[r[n, k], {n, 1, z}, {k, 1, z}]] (* Array A000027 *) %t A380649 FindLinearRecurrence[Table[r[1, k], {k, 1, 20}]] %t A380649 t[i_, j_] := Table[r[i, j + k*s], {k, 0, n - 1}]; %t A380649 d[i_, j_] := -Det[Table[t[i + k*s, j], {k, 0, n - 1}]]; (* (-1)*D(i,j,s,n) *) %t A380649 Grid[Table[d[i, j], {i, 1, z}, {j, 1, z}]] (* array *) %t A380649 FindLinearRecurrence[Table[d[12, k], {k, 1, 20}]] %t A380649 Table[d[k, m - k], {m, 2, z}, {k, 1, m - 1}] // Flatten (* sequence *) %Y A380649 Cf. A000027, A000096, A038722, A185787, A333029, A380660, A380661. %K A380649 nonn,tabl %O A380649 1,2 %A A380649 _Clark Kimberling_, Jan 31 2025