This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A380653 #12 Feb 16 2025 08:34:07 %S A380653 1,1,1,1,1,2,1,1,2,2,1,3,1,1,1,2,1,3,1,2,1,2,1,3,2,1,4,2,1,3,1,4,1,2, %T A380653 1,5,1,1,1,3,1,2,1,2,4,1,1,5,2,3,1,2,1,6,2,3,1,2,1,4,1,1,4,5,1,3,1,2, %U A380653 1,3,1,6,1,1,5,2,2,3,1,6,7,2,1,4,2,1,1,3,1,7,2,1,1,1,1,8,1,4,4,5 %N A380653 Number of positive integers less than or equal to n that have the same sum of prime factors (with repetition) as n. %C A380653 Ordinal transform of A001414. %H A380653 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SumofPrimeFactors.html">Sum of Prime Factors</a>. %F A380653 a(n) = |{j <= n : sopfr(j) = sopfr(n)}|. %p A380653 b:= n-> add(i[1]*i[2], i=ifactors(n)[2]): %p A380653 p:= proc() 0 end: %p A380653 a:= proc(n) option remember; local t; %p A380653 t:= b(n); p(t):= p(t)+1 %p A380653 end: %p A380653 seq(a(n), n=1..100); # _Alois P. Heinz_, Jan 30 2025 %t A380653 sopfr[1] = 0; sopfr[n_] := Plus @@ Times @@@ FactorInteger@ n; Table[Length[Select[Range[n], sopfr[#] == sopfr[n] &]], {n, 1, 100}] %o A380653 (Python) %o A380653 from sympy import factorint %o A380653 from collections import Counter %o A380653 from itertools import count, islice %o A380653 def agen(): # generator of terms %o A380653 sopfrcount = Counter() %o A380653 for n in count(1): %o A380653 key = sum(p*e for p, e in factorint(n).items()) %o A380653 sopfrcount[key] += 1 %o A380653 yield sopfrcount[key] %o A380653 print(list(islice(agen(), 100))) # _Michael S. Branicky_, Jan 30 2025 %Y A380653 Cf. A001414, A058933, A263025, A380654. %K A380653 nonn %O A380653 1,6 %A A380653 _Ilya Gutkovskiy_, Jan 29 2025