This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A380654 #11 Feb 16 2025 08:34:07 %S A380654 1,1,1,2,1,2,1,3,2,2,1,3,1,1,1,4,1,4,1,3,1,2,1,5,6,1,3,2,1,2,1,5,1,2, %T A380654 1,7,1,1,1,4,1,2,1,3,2,1,1,8,5,6,1,2,1,9,2,3,1,2,1,3,1,1,4,6,1,3,1,3, %U A380654 1,2,1,10,1,1,3,2,2,3,1,7,4,2,1,3,2,1,1,4,1,5,2,2,1,1,1,11,1,4,3,8 %N A380654 Number of positive integers less than or equal to n that have the same sum of distinct prime factors as n. %C A380654 Ordinal transform of A008472. %H A380654 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SumofPrimeFactors.html">Sum of Prime Factors</a>. %F A380654 a(n) = |{j <= n : sopf(j) = sopf(n)}|. %p A380654 b:= n-> add(i[1], i=ifactors(n)[2]): %p A380654 p:= proc() 0 end: %p A380654 a:= proc(n) option remember; local t; %p A380654 t:= b(n); p(t):= p(t)+1 %p A380654 end: %p A380654 seq(a(n), n=1..100); # _Alois P. Heinz_, Jan 30 2025 %t A380654 sopf[n_] := DivisorSum[n, # &, PrimeQ[#] &]; Table[Length[Select[Range[n], sopf[#] == sopf[n] &]], {n, 1, 100}] %o A380654 (Python) %o A380654 from sympy import factorint %o A380654 from collections import Counter %o A380654 from itertools import count, islice %o A380654 def agen(): # generator of terms %o A380654 sopfcount = Counter() %o A380654 for n in count(1): %o A380654 key = sum(p for p in factorint(n)) %o A380654 sopfcount[key] += 1 %o A380654 yield sopfcount[key] %o A380654 print(list(islice(agen(), 100))) # _Michael S. Branicky_, Jan 30 2025 %Y A380654 Cf. A008472, A067003, A263025, A380653. %K A380654 nonn %O A380654 1,4 %A A380654 _Ilya Gutkovskiy_, Jan 29 2025