This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A380655 #61 Feb 25 2025 11:24:46 %S A380655 2,11,113,1193,11939,193939,71777393,913311913,93739179151, %T A380655 317793117877,731779311787,1373779119729007 %N A380655 Smallest prime p > 10^(n-1) for which successive cyclic shifts of digits by 1, ..., n-1 positions to the left are all prime, or -1 if no such p exists. %e A380655 _n_p__shifts of digits by 1, ..., n-1 positions (n <= number of digits of p) to the left %e A380655 1 2 -> ; %e A380655 2 11 -> 11; %e A380655 3 113 -> 131, 311; %e A380655 4 1193 -> 1931, 9311, 3119; %e A380655 5 11939 -> 19391, 93911, 39119, 91193; %e A380655 6 193939 -> 939391, 393919, 939193, 391939, 919393; %e A380655 7 71777393 -> 17773937, 77739371, 77393717, 73937177, 39371777, 93717773, but 37177739 = 29 * 683 * 1877; %e A380655 8 913311913 -> 133119139, 331191391, 311913913, 119139133, 191391331, 913913311, 139133119, but 391331191 = 29 * 131 * 239 * 431; %e A380655 9 93739179151 -> 37391791519, 73917915193, 39179151937, 91791519373, 17915193739, 79151937391, 91519373917, 15193739179, but 51937391791 = 419 * 887 * 139747; %e A380655 10 317793117877 -> 177931178773, 779311787731, 793117877317, 931178773177, 311787731779, 117877317793, 178773177931, 787731779311, 877317793117, but 773177931178 = 2 * 386588965589; %e A380655 11 731779311787 -> 317793117877, 177931178773, 779311787731, 793117877317, 931178773177, 311787731779, 117877317793, 178773177931, 787731779311, 877317793117, but 773177931178 = 2 * 386588965589; %e A380655 12 1373779119729007 -> 3737791197290071, 7377911972900713, 3779119729007137, 7791197290071373, 7911972900713737, 9119729007137377, 1197290071373779, 1972900713737791, 9729007137377911, 7290071373779119, 2900713737791197, but 9007137377911972 = 2^2 * 13 * 6841 * 25320008821; %o A380655 (Python) %o A380655 from itertools import count, product %o A380655 from sympy import isprime %o A380655 def A380655(n): %o A380655 if n == 1: return 2 %o A380655 for l in count(n): %o A380655 for a in product('1379', repeat=n-1): %o A380655 for b in product('0123456789', repeat=l-n): %o A380655 for c in '1379': %o A380655 d = ''.join(a+b)+c %o A380655 if all(isprime(int(d[i:]+d[:i])) for i in range(n)): %o A380655 return int(d) # _Chai Wah Wu_, Jan 30 2025 %Y A380655 Cf. A247153, A380669. %K A380655 nonn,base,more %O A380655 1,1 %A A380655 _Jean-Marc Rebert_, Jan 29 2025 %E A380655 a(10) and a(11) corrected by _Chai Wah Wu_, Jan 30 2025 %E A380655 Name edited by _Pontus von Brömssen_, Feb 03 2025 %E A380655 a(12) from _Chai Wah Wu_, Feb 06 2025