A380657 Numbers whose prime factorization has more Pythagorean prime factors than non-Pythagorean prime factors (including multiplicities).
5, 13, 17, 25, 29, 37, 41, 50, 53, 61, 65, 73, 75, 85, 89, 97, 101, 109, 113, 125, 130, 137, 145, 149, 157, 169, 170, 173, 175, 181, 185, 193, 195, 197, 205, 221, 229, 233, 241, 250, 255, 257, 265, 269, 275, 277, 281, 289, 290, 293, 305, 313, 317, 325, 337
Offset: 1
Keywords
Examples
50 appears because 2*5*5 has 2 Pythagorean prime factors but only 1 non-Pythagorean prime factor.
Programs
-
Mathematica
f[{x_, y_}] := If[Mod[x, 4] == 1, y, -y]; s[n_] := Map[f, FactorInteger[n]]; p[n_] := {Total[Select[s[n], # > 0 &]], -Total[Select[s[n], # < 0 &]]}; p[1] = {0, 0}; t = Table[p[n], {n, 1, 500}]; u = Map[First, t]; (* A083025 *) v = Map[Last, t] ; (* A376961 *) v - u (* A377625 *); Flatten[Position[v - u, -1]] (* this sequence *)