A380660 Rectangular array pos(i,j,1,2) read by descending antidiagonals: pos( ) and neg() denote the positive part and negative part of a determinant; see Comments.
5, 16, 27, 48, 65, 84, 119, 144, 171, 200, 253, 288, 325, 364, 405, 480, 527, 576, 627, 680, 735, 836, 897, 960, 1025, 1092, 1161, 1232, 1363, 1440, 1519, 1600, 1683, 1768, 1855, 1944, 2109, 2204, 2301, 2400, 2501, 2604, 2709, 2816, 2925, 3128, 3243, 3360
Offset: 1
Examples
Corner of pos(i,j,1,2): 5 16 48 119 253 480 836 1363 2109 27 65 144 288 527 897 1440 2204 3243 84 171 325 576 960 1519 2301 3360 4756 200 364 627 1025 1600 2400 3479 4897 6720 405 680 1092 1683 2501 3600 5040 6887 9213 735 1161 1768 2604 3723 5185 7056 9408 12319 1232 1855 2709 3848 5332 7227 9605 12544 16128 1944 2816 3975 5481 7400 9804 12771 16385 20736 2925 4104 5632 7575 10005 13000 16644 21027 26245 4235 5785 7752 10208 13231 16905 21320 26572 32763 5940 7931 10413 13464 17168 21615 26901 33128 40404 8112 10620 13699 17433 21912 27232 33495 40809 49288 M(1,1,1,2) is the matrix with (row 1) = (1,2), (row 2) =(3,5), so that pos(1,1,1,2) = 1*5 = 5; neg(1,1,1,2) = 2*3 = 6; D(1,1,1,2) = -1; P(1,1,1,2) = 11.
References
- S. Lang, Algebra, 2nd ed., Addison-Wesley, 1984, 452-453.
Links
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Mathematica
s = 1; n = 2; z = 12; r[n_, k_] := n + (n + k - 2)*(n + k - 1)/2 (* Array A000027 *) Grid[Table[r[n, k], {n, 1, z}, {k, 1, z}]] t[i_, j_] := Table[r[i, j + k*s], {k, 0, n - 1}]; d[i_, j_] := Det[Table[t[i + k*s, j], {k, 0, n - 1}]]; (* D(i,j,s,n) *) p[i_, j_] := Permanent[Table[t[i + k*s, j], {k, 0, n - 1}]]; (* P(i,j,s,n) *) pos[i_, j_] := (p[i, j] + d[i, j])/2; neg[i_, j_] := (p[i, j] - d[i, j])/2; Grid[Table[pos[i, j], {i, 1, z}, {j, 1, z}]] (* A380660 array *) Grid[Table[neg[i, j], {i, 1, z}, {j, 1, z}]] (* A380661 array *) FindLinearRecurrence[Table[pos[1, k], {k, 1, 20}]] (* row recurrence, all rows *) FindLinearRecurrence[Table[neg[7, k], {k, 1, 20}]] (* row recurrence, all rows *) Table[pos[k, m - k], {m, 2, z}, {k, 1, m - 1}] // Flatten (* A380660 sequence *) Table[neg[k, m - k], {m, 2, z}, {k, 1, m - 1}] // Flatten (* A380661 sequence *)
Comments