A380661 Rectangular array neg(i,j,1,2) read by descending antidiagonals: pos() and neg() denote the positive part and negative part of a determinant; see Comments.
6, 20, 30, 56, 72, 90, 132, 156, 182, 210, 272, 306, 342, 380, 420, 506, 552, 600, 650, 702, 756, 870, 930, 992, 1056, 1122, 1190, 1260, 1406, 1482, 1560, 1640, 1722, 1806, 1892, 1980, 2162, 2256, 2352, 2450, 2550, 2652, 2756, 2862, 2970, 3192, 3306, 3422
Offset: 1
Examples
Corner of neg(i,j,1,2): 6 20 56 132 272 506 870 1406 2162 3192 30 72 156 306 552 930 1482 2256 3306 4692 90 182 342 600 992 1560 2352 3422 4830 6642 210 380 650 1056 1640 2450 3540 4970 6806 9120 420 702 1122 1722 2550 3660 5112 6972 9312 12210 756 1190 1806 2652 3782 5256 7140 9506 12432 16002 1260 1892 2756 3906 5402 7310 9702 12656 16256 20592 1980 2862 4032 5550 7482 9900 12882 16512 20880 26082 2970 4160 5700 7656 10100 13110 16770 21170 26406 32580 4290 5852 7832 10302 13340 17030 21462 26732 32942 40200 6006 8010 10506 13572 17292 21756 27060 33306 40602 49062 8190 10712 13806 17556 22052 27390 33672 41006 49506 59292 M(1,1,1,2) is the matrix with (row 1) = (1,2), (row 2) =(3,5), so that pos(1,1,1,2) = 1*5 = 5; neg(1,1,1,2) = 2*3 = 6; D(1,1,1,2) = -1; P(1,1,1,2) = 11.
References
- S. Lang, Algebra, 2nd ed., Addison-Wesley, 1984, 452-453.
Links
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Mathematica
s = 1; n = 2; z = 12; r[n_, k_] := n + (n + k - 2)*(n + k - 1)/2 (* Array A000027 *) Grid[Table[r[n, k], {n, 1, z}, {k, 1, z}]] t[i_, j_] := Table[r[i, j + k*s], {k, 0, n - 1}]; d[i_, j_] := Det[Table[t[i + k*s, j], {k, 0, n - 1}]]; (* D(i,j,s,n) *) p[i_, j_] := Permanent[Table[t[i + k*s, j], {k, 0, n - 1}]]; (* P(i,j,s,n) *) pos[i_, j_] := (p[i, j] + d[i, j])/2; neg[i_, j_] := (p[i, j] - d[i, j])/2; Grid[Table[pos[i, j], {i, 1, z}, {j, 1, z}]] (* A380660 array *) Grid[Table[neg[i, j], {i, 1, z}, {j, 1, z}]] (* A380661 array *) FindLinearRecurrence[Table[pos[1, k], {k, 1, 20}]] (* row recurrence, all rows *) FindLinearRecurrence[Table[neg[7, k], {k, 1, 20}]] (* row recurrence, all rows *) Table[pos[k, m - k], {m, 2, z}, {k, 1, m - 1}] // Flatten (* A380660 sequence *) Table[neg[k, m - k], {m, 2, z}, {k, 1, m - 1}] // Flatten (* A380661 sequence *)
Comments