cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380670 Population of elementary triangular automaton rule 182 at generation n, starting from a lone 1 cell at generation 0.

This page as a plain text file.
%I A380670 #19 May 16 2025 00:58:47
%S A380670 1,4,10,19,28,34,52,58,82,85,124,118,181,178,223,274,283,322,355,388,
%T A380670 421,502,493,568,577,676,739,724,865,856,931,1006,1069,1162,1141,1342,
%U A380670 1339,1450,1387,1648,1603,1756,1801,1960,1945,2230,2125,2404,2251,2374,2395,2746,2683,2884,2983
%N A380670 Population of elementary triangular automaton rule 182 at generation n, starting from a lone 1 cell at generation 0.
%C A380670 An Elementary Triangular Automaton (ETA) is a cellular automaton in the triangular grid where cells hold binary states and rules are local to the first neighborhood. There are 256 possible ETA rules.
%C A380670 Rule 182 (10110110 in binary):
%C A380670   -----------------------------------------------
%C A380670   |state of the cell            |1|1|1|1|0|0|0|0|
%C A380670   |sum of the neighbors' states |3|2|1|0|3|2|1|0|
%C A380670   |cell's next state            |1|0|1|1|0|1|1|0|
%C A380670   -----------------------------------------------
%H A380670 Paul Cousin, <a href="/A380670/b380670.txt">Table of n, a(n) for n = 0..16384</a>
%H A380670 Paul Cousin, <a href="/A380670/a380670.pdf">Illustration for n = 0..64</a>
%H A380670 Paul Cousin, <a href="https://triangular-automata.net">Triangular Automata</a>
%H A380670 Paul Cousin, <a href="https://triangular-automata.net/rules.html?rule=182">Rule 182</a>
%H A380670 Paul Cousin, <a href="https://triangular-automata.net/?p=integer-sequences">Triangular Automata Integer Sequences</a>
%H A380670 Paul Cousin, <a href="https://doi.org/10.25088/ComplexSystems.33.3.253">Triangular Automata: The 256 Elementary Cellular Automata of the Two-Dimensional Plane</a>, Complex Systems, 33(3), 2024, pp. 253-276.
%Y A380670 Cf. A380668, A380012, A372581.
%K A380670 nonn
%O A380670 0,2
%A A380670 _Paul Cousin_, Jan 30 2025