This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A380672 #25 Feb 16 2025 23:01:56 %S A380672 1,1,1,1,1,2,3,1,1,1,1,2,5,1,1,2,3,4,1,1,2,7,1,3,5,1,1,1,2,3,9,1,1,2, %T A380672 4,5,1,3,7,1,2,11,1,1,2,3,4,8,1,1,2,13,1,1,2,4,7,1,1,2,3,5,6,10,15,1, %U A380672 1,1,3,11,1,2,17,1,5,7,1,2,3,4,9,1,1,2,19 %N A380672 Triangle read by rows where row n lists divisors d | n such that rad(d) != rad(n), where rad = A007947. %C A380672 Row n lists terms in row n of A027750 that do not have the same squarefree kernel as does n. %H A380672 Michael De Vlieger, <a href="/A380672/b380672.txt">Table of n, a(n) for n = 2..11751</a> (rows n = 2..2000, flattened). %F A380672 Row 1 is empty since rad(1) | rad(1). %F A380672 The first term of row n is 1 for all n > 1. %F A380672 n is not in row n since rad(n) = rad(n). %F A380672 Length of row n = A183093(n) = tau(n) - tau(n/rad(n)). %F A380672 Let S(n) = row n of A284318 and let D(n) = row n of A027750. Then row n of this sequence is D(n) \ S(n). %F A380672 For prime p and m > 0, row p^m = {1}, since d | p^m, d > 1, are such that rad(d) = p. %F A380672 For squarefree composite n, row n = D(n) \ {n} with length 2^(omega(k)-1). %e A380672 D(6) = {1, 2, 3, 6}; of these, {1, 2, 3} are such that rad(d) != rad(6). %e A380672 D(10) = {1, 2, 5, 10}; of these, {1, 2, 5} are such that rad(d) != rad(10). %e A380672 D(12) = {1, 2, 3, 4, 6, 12}; of these, {1, 2, 3, 4} are such that rad(d) != rad(12). %e A380672 D(36) = {1, 2, 3, 4, 6, 9, 12, 18, 36}; of these, {1, 2, 3, 4, 9} are such that rad(d) != rad(36), etc. %e A380672 Table begins: %e A380672 n: row n %e A380672 --------------- %e A380672 2: 1; %e A380672 3: 1; %e A380672 4: 1; %e A380672 5: 1; %e A380672 6: 1, 2, 3; %e A380672 7: 1; %e A380672 8: 1; %e A380672 9: 1; %e A380672 10: 1, 2, 5; %e A380672 11: 1; %e A380672 12: 1, 2, 3, 4; %e A380672 13: 1; %e A380672 14: 1, 2, 7; %e A380672 15: 1, 3, 5; %e A380672 ... %t A380672 rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]]; Table[r = rad[n]; Select[Divisors[n], rad[#] != r &], {n, 2, 40}] // Flatten %Y A380672 Cf. A000005, A005361, A007947, A027750, A183093, A284318, A380819. %K A380672 nonn,tabf,easy %O A380672 2,6 %A A380672 _Michael De Vlieger_, Feb 13 2025