A380691 Number of divisors d | k, d < k/d, such that (d, k/d) are neither unitary nor both coreful, where k is neither squarefree nor prime power (in A126706).
1, 1, 1, 2, 1, 2, 2, 1, 1, 3, 1, 1, 2, 2, 2, 1, 1, 3, 1, 1, 3, 2, 2, 2, 1, 4, 1, 1, 2, 2, 3, 3, 1, 1, 4, 1, 2, 2, 2, 2, 2, 4, 1, 1, 2, 2, 1, 2, 4, 3, 1, 4, 1, 1, 1, 3, 5, 2, 1, 2, 5, 2, 2, 3, 2, 1, 3, 1, 4, 2, 4, 2, 2, 2, 2, 1, 6, 1, 1, 1, 2, 2, 5, 2, 1, 4, 1
Offset: 1
Examples
Table of n, a(n) listing divisors d and S(n)/d for select values of n: n S(n) a(n) d*S(n)/d --------------------------------------------------------------------- 1 12 1 2*6 2 18 1 3*6 3 20 1 2*10 4 24 2 2*12, 4*6 5 28 1 2*14 6 36 2 2*18, 3*12 7 40 2 2*20, 4*10 10 48 3 2*24, 4*12, 6*8 26 96 4 2*48, 4*24, 6*16, 8*12 57 180 5 2*90, 3*60, 6*30, 10*18, 12*15 77 240 6 2*120, 4*60, 6*40, 8*30, 10*24, 12*20 123 360 8 2*180, 3*120, 4*90, 6*60, 10*36, 12*30, 15*24, 18*20
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Table[1/2*(DivisorSigma[0, k] - 2^PrimeNu[k] - Apply[Times, FactorInteger[k][[All, -1]] - 1]), {k, Select[Range[12, 240], Nor[PrimePowerQ[#], SquareFreeQ[#]] &] }]
Formula
a(n) = card({ d | k : d < k/d, gcd(d, k/d) > 1, rad(d) != rad(k/d) }), k = S(n).
For k in S(n), a(n) = 1/2 * tau(k) - 2^omega(k) - Product_{p|k} m-1, where p^m | k but p^(m-1) does not divide k.
Comments