cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380693 Numbers k such that the least prime dividing k is larger than or equal to the maximum exponent in the prime factorization of k; a(1) = 1 by convention.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79
Offset: 1

Views

Author

Amiram Eldar, Jan 30 2025

Keywords

Comments

First differs from A047592, A187320, A207481 and A255805 at n = 48: A047592(48) = A187320(48) = A207481(48) = A255805(48) = 54 is not a term of this sequence.
Numbers k such that A020639(k) >= A051903(k).
Disjoint union of the sequences S_k, k >= 1, where S_k is the sequence of p-rough numbers (numbers whose prime factors are all greater than or equal to p), with p = nextprime(k) = A007918(k), whose maximum exponent in their prime factorization is k (i.e., numbers that are (k+1)-free but not k-free, where k-free numbers are numbers whose prime factorization exponents do not exceed k).
The asymptotic density of this sequence is Sum_{i>=1} d(i) = 0.84999238500582943243..., where d(i), the density of S_i, equals f(i+1) * Product_{primes p < i} ((1-1/p)/(1-1/p^(i+1))) - f(i) * Product_{primes p < i} ((1-1/p)/(1-1/p^i)), f(i) = 1/zeta(i) if i >= 2, and f(1) = 0.

Examples

			6 = 2^1 * 3^1 is a term since 2 >= 1.
8 = 2^3 is not a term since 2 < 3.
		

Crossrefs

Programs

  • Mathematica
    q[k_] := k == 1 || Module[{f = FactorInteger[k]}, f[[1, 1]] >= Max[f[[;; , 2]]]]; Select[Range[100], q]
  • PARI
    isok(k) = if(k == 1, 0, my(f = factor(k), e = f[, 2]); f[1, 1] >= vecmax(e));