A380731 Numbers k such that the largest prime dividing k is smaller than or equal to the minimum exponent in the prime factorization of k.
4, 8, 16, 27, 32, 64, 81, 128, 216, 243, 256, 432, 512, 648, 729, 864, 1024, 1296, 1728, 1944, 2048, 2187, 2592, 3125, 3456, 3888, 4096, 5184, 5832, 6561, 6912, 7776, 8192, 10368, 11664, 13824, 15552, 15625, 16384, 17496, 19683, 20736, 23328, 27648, 31104, 32768
Offset: 1
Keywords
Examples
4 = 2^2 is a term since A006530(4) = A051904(4) = 2. 9 = 3^2 is not a term since 3 > 2.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..5416 (terms below 10^18)
- Eric Weisstein's World of Mathematics, Smooth Number.
- Wikipedia, Powerful number: Generalization (k-full number).
- Wikipedia, Smooth number.
- Index entries for sequences related to powerful numbers.
Crossrefs
Programs
-
Maple
filter:= proc(n) local F; F:= ifactors(n)[2]; max(F[..,1]) <= min(F[..,2]) end proc: select(filter, [$2..50000]); # Robert Israel, Jan 31 2025
-
Mathematica
Select[Range[2, 33000], Module[{f = FactorInteger[#]}, f[[-1, 1]] <= Min[f[[;;, 2]]]] &]
-
PARI
isok(k) = if(k == 1, 0, my(f = factor(k), e = f[,2]); f[#f~, 1] <= vecmin(e));
Formula
Sum_{n>=1} 1/a(n) = Sum_{k>=1} f(k) = 0.56987350769329353172..., where f(k) = Sum_{i>=1} 1 / S_k(i) = g(prime(k), k) - g(prime(k+1), k), g(p, k) = Product_{j=1..k} (1 + Sum_{i >= p} 1/prime(j)^i), and S_k is defined in the Comments section.
Comments