A380730 Numbers k such that the greatest prime dividing k is smaller than the minimum exponent in the prime factorization of k.
8, 16, 32, 64, 81, 128, 243, 256, 512, 729, 1024, 1296, 2048, 2187, 2592, 3888, 4096, 5184, 6561, 7776, 8192, 10368, 11664, 15552, 15625, 16384, 19683, 20736, 23328, 31104, 32768, 34992, 41472, 46656, 59049, 62208, 65536, 69984, 78125, 82944, 93312, 104976, 124416
Offset: 1
Keywords
Examples
8 = 2^3 is a term since 2 < 3. 9 = 3^2 is not a term since 3 > 2.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Smooth Number.
- Wikipedia, Powerful number: Generalization (k-full number).
- Wikipedia, Smooth number.
- Index entries for sequences related to powerful numbers.
Programs
-
Mathematica
Select[Range[2, 125000], Module[{f = FactorInteger[#]}, f[[-1, 1]] < Min[f[[;;, 2]]]] &]
-
PARI
isok(k) = if(k == 1, 0, my(f = factor(k), e = f[,2]); f[#f~, 1] < vecmin(e));
Formula
Sum_{n>=1} 1/a(n) = Sum_{k>=1} f(k) = 0.27091620709274155136..., where f(k) = Sum_{i>=1} 1 / S_k(i) = g(prime(k), k) - g(prime(k+1), k), g(p, k) = Product_{j=1..k} (1 + Sum_{i >= p+1} 1/prime(j)^i), and S_k is defined in the Comments section.
Comments