This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A380734 #12 Feb 05 2025 11:16:59 %S A380734 1,3,3,7,7,0,8,7,1,8,6,6,8,4,1,8,2,4,5,6,5,8,2,2,8,4,6,5,5,6,3,3,7,7, %T A380734 3,3,6,2,2,3,3,6,0,4,9,1,3,1,3,7,5,2,3,3,2,7,5,6,4,3,6,9,7,4,4,2,2,6, %U A380734 1,3,7,3,6,1,5,4,2,1,1,6,6,7,8,3,2,3,9,1,9,8 %N A380734 Decimal expansion of the medium/short edge length ratio of a disdyakis dodecahedron. %H A380734 Paolo Xausa, <a href="/A380734/b380734.txt">Table of n, a(n) for n = 1..10000</a> %H A380734 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DisdyakisDodecahedron.html">Disdyakis Dodecahedron</a>. %H A380734 Wikipedia, <a href="https://en.wikipedia.org/wiki/Disdyakis_dodecahedron">Disdyakis dodecahedron</a>. %H A380734 <a href="/index/Al#algebraic_02">Index entries for algebraic numbers, degree 2</a>. %F A380734 Equals (3/14)*(2 + 3*sqrt(2)) = (3/14)*(2 + A010474). %e A380734 1.33770871866841824565822846556337733622336049131... %t A380734 First[RealDigits[3/14*(2 + 3*Sqrt[2]), 10, 100]] %o A380734 (PARI) (2 + 3*sqrt(2))*3/14 \\ _Charles R Greathouse IV_, Feb 05 2025 %Y A380734 Cf. A380735 (long/short edge length ratio). %Y A380734 Cf. A010474, A378393, A378712, A378713, A378714, A378715, A380736, A380737, A380738. %K A380734 nonn,cons,easy %O A380734 1,2 %A A380734 _Paolo Xausa_, Jan 31 2025