This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A380735 #12 Feb 05 2025 11:17:51 %S A380735 1,6,3,0,6,0,1,9,3,7,4,8,1,8,7,0,7,2,1,2,5,7,3,8,4,1,0,3,4,5,8,5,2,8, %T A380735 2,9,6,9,3,8,5,2,4,5,5,3,6,2,5,2,7,8,2,9,6,1,6,8,0,9,7,1,0,5,4,2,7,2, %U A380735 4,7,4,9,6,9,2,3,1,5,8,1,4,8,4,0,7,1,9,8,2,1 %N A380735 Decimal expansion of the long/short edge length ratio of a disdyakis dodecahedron. %C A380735 Apart from leading digits the same as A343069. - _R. J. Mathar_, Feb 03 2025 %H A380735 Paolo Xausa, <a href="/A380735/b380735.txt">Table of n, a(n) for n = 1..10000</a> %H A380735 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DisdyakisDodecahedron.html">Disdyakis Dodecahedron</a>. %H A380735 Wikipedia, <a href="https://en.wikipedia.org/wiki/Disdyakis_dodecahedron">Disdyakis dodecahedron</a>. %H A380735 <a href="/index/Al#algebraic_02">Index entries for algebraic numbers, degree 2</a>. %F A380735 Equals (10 + sqrt(2))/7 = (10 + A002193)/7. %e A380735 1.630601937481870721257384103458528296938524553625... %t A380735 First[RealDigits[(10 + Sqrt[2])/7, 10, 100]] %o A380735 (PARI) (10 + sqrt(2))/7 \\ _Charles R Greathouse IV_, Feb 05 2025 %Y A380735 Cf. A380734 (medium/short edge length ratio). %Y A380735 Cf. A002193, A378393, A378712, A378713, A378714, A378715, A380736, A380737, A380738. %K A380735 nonn,cons,easy %O A380735 1,2 %A A380735 _Paolo Xausa_, Jan 31 2025