This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A380757 #21 Apr 01 2025 03:28:30 %S A380757 1,2,3,4,5,7,9,11,13,17,19,23,25,27,29,31,37,41,43,47,49,53,59,61,67, %T A380757 71,73,79,81,83,89,97,101,103,107,109,113,121,125,127,131,137,139,149, %U A380757 151,157,163,167,169,173,179,181,191,193,197,199,211,223,227,229 %N A380757 Powers of primes that have a primitive root. %C A380757 Proper subset of A033948. %C A380757 A046022 is a proper subset of this sequence. %H A380757 Michael De Vlieger, <a href="/A380757/b380757.txt">Table of n, a(n) for n = 1..10000</a> %F A380757 Union of {1, 2, 4} and A061345. %F A380757 This sequence is A000961 without A000079(k) for k > 2. %F A380757 A033948 = union of {a(n)} and {2*a(n)} without 8 = union of {a(n)} and A278568, where {a(n)} represents this sequence. %F A380757 Intersection of A000961 and A033948. %F A380757 Define c(m) to be the number of terms that do not exceed m. Then for m >= 4, c(m) = 3 + (Sum_{k = 1..floor(log_2(m))} pi(floor(m^(1/k)))) - floor(log_2(m)) = 3 + A065515(m) - A113473(m). %t A380757 With[{nn = 2^8}, %t A380757 Complement[#, Array[2^# &, Floor@ Log2[#[[-1]]] + 2, 3]] &@ %t A380757 Union[{1}, Prime@ Range@ PrimePi[#[[-1]] ], #] &@ %t A380757 Select[Union@ Flatten@ %t A380757 Table[a^2*b^3, {b, Surd[#, 3]}, {a, Sqrt[nn/b^3]}], %t A380757 PrimePowerQ] ] %o A380757 (Python) %o A380757 from sympy import primepi, integer_nthroot %o A380757 def A380757(n): %o A380757 def bisection(f,kmin=0,kmax=1): %o A380757 while f(kmax) > kmax: kmax <<= 1 %o A380757 kmin = kmax >> 1 %o A380757 while kmax-kmin > 1: %o A380757 kmid = kmax+kmin>>1 %o A380757 if f(kmid) <= kmid: %o A380757 kmax = kmid %o A380757 else: %o A380757 kmin = kmid %o A380757 return kmax %o A380757 def f(x): return n if x<6 else int(n+x-3-sum(primepi(integer_nthroot(x,k)[0])-1 for k in range(1,x.bit_length()))) %o A380757 return bisection(f,n,n) # _Chai Wah Wu_, Feb 03 2025 %Y A380757 Cf. A000079, A000961, A033948, A046022, A061345, A278568. %K A380757 nonn,easy %O A380757 1,2 %A A380757 _Michael De Vlieger_, Feb 01 2025