This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A380786 #51 Feb 27 2025 15:08:48 %S A380786 17,18,19,20,21,22,24,25,26,28,65,66,68,72,79,80,87,91,93,94,96,103, %T A380786 107,109,110,115,117,118,121,122,124,4097,4098,4100,4104,4112,4128, %U A380786 4160,4224,4352,4608,5119,5120,5631,5887,6015,6079,6111,6127,6135,6139,6141,6142,6144,6655,6911 %N A380786 Numbers with a prime number of bits, prime number of ones, and prime number of zeros in their binary representation. %C A380786 Each term has either two zeros or two ones in its binary representation. And so the total number of bits of each term is the larger prime of a twin prime pair. %H A380786 Michael S. Branicky, <a href="/A380786/b380786.txt">Table of n, a(n) for n = 1..10000</a> %e A380786 a(1) = 17 = 10001_2. Number of bits is 5, number of ones is 2, number of zeros is 3. {2,3,5} are all primes. %t A380786 Select[Range[2^13], AllTrue[{#1, #2, #1 - #2} & @@ {IntegerLength[#,2], DigitCount[#, 2, 1]}, PrimeQ] & ] (* _Michael De Vlieger_, Feb 03 2025 *) %o A380786 (Python) %o A380786 from sympy import isprime %o A380786 def ok(n): return isprime(L:=n.bit_length()) and isprime(O:=n.bit_count()) and isprime(L-O) %o A380786 print([k for k in range(7160) if ok(k)]) # _Michael S. Branicky_, Feb 03 2025 %o A380786 (Python) %o A380786 from sympy import isprime, nextprime, sieve %o A380786 from itertools import combinations, count, islice %o A380786 def agen(): # generator of terms %o A380786 p = 5 %o A380786 while True: %o A380786 passed = set() %o A380786 if isprime(p-2): %o A380786 for q in [2, p-2]: %o A380786 for locs in combinations(range(1, p), q-1): %o A380786 w = ["1"] + ["0"]*(p-1) %o A380786 for i in locs: w[i] = "1" %o A380786 passed.add(int("".join(w), 2)) %o A380786 yield from sorted(passed) %o A380786 p = nextprime(p) %o A380786 print(len(passed), p) %o A380786 print(list(islice(agen(), 61))) # _Michael S. Branicky_, Feb 03 2025 %o A380786 (PARI) isok(k) = my(h=hammingweight(k), b=#binary(k)); isprime(h) && isprime(b) && isprime(b-h); \\ _Michel Marcus_, Feb 07 2025 %Y A380786 Intersection of A052294, A144754, and A380788. %Y A380786 Subsequence of primes gives A272478. %Y A380786 Subsequence of A343258. %Y A380786 Cf. A006512 (bitlengths of terms). %K A380786 nonn,base %O A380786 1,1 %A A380786 _Marc Morgenegg_, Feb 03 2025