This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A380792 #19 Feb 05 2025 22:12:15 %S A380792 21,9045,890445,88904445,8889044445,888890444445,88888904444445, %T A380792 8888889044444445,888888890444444445,88888888904444444445, %U A380792 8888888889044444444445,973609801090486804900545,88888888888904444444444445,8888888888889044444444444445,931379640537060465689820268530 %N A380792 a(n) is the largest triangular number that is the concatenation of two n-digit numbers 2*x and x. %C A380792 a(n) is the largest triangular number of the form (2*10^n+1)*x where 10^(n-1) <= x < 10^n / 2. %C A380792 For n >= 2, (2*10^n+1)*(4*(10^n-1)/9+1) = t * (t+1)/2 where t = (4*10^n + 2)/3, so this is a triangular number of that form. Thus a(n) >= (2*10^n+1)*(4*(10^n-1)/9+1). %H A380792 Robert Israel, <a href="/A380792/b380792.txt">Table of n, a(n) for n = 1..100</a> %H A380792 Mathematics StackExchange, <a href="https://math.stackexchange.com/questions/5031550/what-is-the-largest-6-digit-number-abcdef-where-abc-2def-which-can-be-expres">What is the largest 6-digit number ABCDEF where ABC = 2DEF which can be expressed as the sum of the first n natural numbers?</a> %e A380792 a(3) = 890445 because 890445 = 1334 * 1335/2 is a triangular number and is the concatenation of the two 3-digit numbers 890 = 2*445 and 445, and no larger number works. %p A380792 g:= proc(d) local a,b,n, ymax,x,y; %p A380792 ymax:= -1; %p A380792 for a in numtheory:-divisors(2*(2*10^d+1)) do %p A380792 b:= 2*(2*10^d+1)/a; %p A380792 if igcd(a,b)>1 then next fi; %p A380792 n:= chrem([0,-1],[a,b]); %p A380792 x:= n*(n+1)/2; %p A380792 y:= x/(2*10^d+1); %p A380792 if y < 10^(d-1) or 2*y >= 10^d then next fi; %p A380792 if y > ymax then ymax:= y fi %p A380792 od; %p A380792 (2*10^d+1)*ymax %p A380792 end proc: %p A380792 map(g, [$1..25]); %Y A380792 Cf. A000217, A226742. %K A380792 nonn,base %O A380792 1,1 %A A380792 _Robert Israel_, Feb 04 2025