cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380811 Smallest composite number divisible by prime(n) which shares at least one decimal digit with prime(n).

This page as a plain text file.
%I A380811 #18 Feb 05 2025 22:14:04
%S A380811 12,30,15,70,110,39,51,95,92,203,93,74,123,301,94,159,295,122,268,142,
%T A380811 365,237,332,178,194,202,206,214,218,339,254,393,274,417,298,453,314,
%U A380811 326,501,346,537,1086,955,386,394,398,422,892,1362,916,932,956,482,502,514
%N A380811 Smallest composite number divisible by prime(n) which shares at least one decimal digit with prime(n).
%C A380811 10*prime(n) contains all the digits of prime(n), but is not always the smallest such number.
%H A380811 Michael De Vlieger, <a href="/A380811/b380811.txt">Table of n, a(n) for n = 1..10000</a>
%H A380811 Michael De Vlieger, <a href="/A380811/a380811.png">Log log scatterplot of a(n)</a>, n = 1..10^6.
%F A380811 a(n) <= 10*prime(n), with equality when n = 2,4,5.... (doubtful if there are any more)
%e A380811 123 is the smallest number divisible by prime(13) = 41 which shares at least one decimal digit (1) of 41, so a(13) = 123.
%e A380811 218 is the smallest number divisible by prime(29) = 109 which shares at least one decimal digit (1) with 109, so a(29) = 218.
%t A380811 Table[p = Prime[n]; d = IntegerDigits[p]; m = 1; Until[k = m*p; IntersectingQ[d, IntegerDigits[k]], m++]; k, {n, 120}] (* _Michael De Vlieger_, Feb 05 2025 *)
%o A380811 (PARI) a(n) = my(p = prime(n), d = Set(digits(p))); for(i = 2, oo, if(#setintersect(d, Set(digits(i*p))) > 0, return(i*p))) \\ _David A. Corneth_, Feb 05 2025
%Y A380811 Cf. A000040.
%K A380811 nonn,base
%O A380811 1,1
%A A380811 _David James Sycamore_, Feb 04 2025
%E A380811 More terms from _David A. Corneth_, Feb 05 2025