This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A380822 #17 May 08 2025 16:57:04 %S A380822 1,0,1,1,0,1,1,1,0,1,0,3,1,0,1,2,1,4,1,0,1,3,3,3,5,1,0,1,2,10,5,4,6,1, %T A380822 0,1,5,9,17,8,5,7,1,0,1,8,16,22,26,10,6,8,1,0,1,10,35,33,37,37,12,7,9, %U A380822 1,0,1,19,44,80,59,56,48,14,8,10,1,0,1 %N A380822 Triangle read by rows: T(n,k) is the number of compositions of n with k pairs of equal adjacent parts and all parts in standard order. %C A380822 A composition with parts in standard order satisfies the condition that for any part p > 1, the part p - 1 has already appeared. All compositions of this kind have first part 1. %H A380822 Alois P. Heinz, <a href="/A380822/b380822.txt">Rows n = 1..200, flattened</a> %F A380822 G.f.: Sum_{i>0} G(i) where G(k) = G(k-1) * x*k * (1 + 1/(1 - Sum_{j=1..k} ( x^j/(1 - (z-1)*x^j) )) * Sum_{j=1..k} ( z^[j=k] * x^j/(1 - (z-1)*x^j) )) and G(0) = 1. %e A380822 Triangle begins: %e A380822 k=0 1 2 3 4 5 6 7 8 9 %e A380822 n=1 [1], %e A380822 n=2 [0, 1], %e A380822 n=3 [1, 0, 1], %e A380822 n=4 [1, 1, 0, 1], %e A380822 n=5 [0, 3, 1, 0, 1], %e A380822 n=6 [2, 1, 4, 1, 0, 1], %e A380822 n=7 [3, 3, 3, 5, 1, 0, 1], %e A380822 n=8 [2, 10, 5, 4, 6, 1, 0, 1], %e A380822 n=9 [5, 9, 17, 8, 5, 7, 1, 0, 1], %e A380822 n=10 [8, 16, 22, 26, 10, 6, 8, 1, 0, 1], %e A380822 ... %e A380822 Row n = 6 counts: %e A380822 T(6,0) = 2: (1,2,1,2), (1,2,3). %e A380822 T(6,1) = 1: (1,2,2,1). %e A380822 T(6,2) = 4: (1,1,1,2,1), (1,1,2,1,1), (1,1,2,2), (1,2,1,1,1). %e A380822 T(6,3) = 1: (1,1,1,1,2). %e A380822 T(6,4) = 0: . %e A380822 T(6,5) = 1: (1,1,1,1,1,1). %p A380822 b:= proc(n, l, i) option remember; expand(`if`(n=0, 1, add( %p A380822 `if`(j=l, x, 1)*b(n-j, j, max(i, j)), j=1..min(n, i+1)))) %p A380822 end: %p A380822 T:= (n, k)-> coeff(b(n, 0$2), x, k): %p A380822 seq(seq(T(n, k), k=0..n-1), n=1..12); # _Alois P. Heinz_, May 08 2025 %o A380822 (PARI) %o A380822 G(k,N) = {my(x='x+O('x^N)); if(k<1,1, G(k-1,N) * x^k * (1 + (1/(1 - sum(j=1,k, x^j/(1-(z-1)*x^j)))) * sum(j=1,k, z^(if(j==k,1,0)) * x^j/(1-(z-1)*x^j))))} %o A380822 T_xz(max_row) = {my(N = max_row+1, x='x+O('x^N), h = sum(i=1,N/2+1, G(i,N))); vector(N-1, n, Vecrev(polcoeff(h, n)))} %o A380822 T_xz(10) %Y A380822 Cf. A000110, A003242, A047998, A106356, A107429, A126347, A278984, A383253 (row sums). %K A380822 nonn,easy,tabl %O A380822 1,12 %A A380822 _John Tyler Rascoe_, May 08 2025