cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380823 Semiperimeter of the unique primitive Pythagorean triple whose inradius is A000032(n) and such that its long leg and its hypotenuse are consecutive natural numbers.

This page as a plain text file.
%I A380823 #29 Mar 21 2025 02:24:05
%S A380823 15,6,28,45,120,276,703,1770,4560,11781,30628,79800,208335,544446,
%T A380823 1423828,3725085,9748320,25514796,66787903,174835650,457697640,
%U A380823 1198222581,3136914028,8212428720,21500225295,56288009526,147363418828,385801624845,1010040449160,2644318093956,6922911197503
%N A380823 Semiperimeter of the unique primitive Pythagorean triple whose inradius is A000032(n) and such that its long leg and its hypotenuse are consecutive natural numbers.
%D A380823 Miguel Ángel Pérez García-Ortega, José Manuel Sánchez Muñoz and José Miguel Blanco Casado, El Libro de las Ternas Pitagóricas, Preprint 2025.
%H A380823 Miguel-Ángel Pérez García-Ortega, <a href="/A380823/a380823_1.pdf">El Libro de las Ternas Pitagóricas</a>.
%H A380823 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (4,-2,-6,4,2,-1).
%F A380823 a(n) = (A380821(n,1) + A380821(n,2) + A380821(n,3))/2.
%F A380823 a(n) = (Lucas(n) + 1)*(2*Lucas(n) + 1).
%F A380823 G.f.: (15 - 54*x + 34*x^2 + 35*x^3 - 28*x^4)/((1 - x)*(1 + x)*(1 - 3*x + x^2)*(1 - x - x^2)). - _Stefano Spezia_, Mar 08 2025
%e A380823 For n=2, the short leg is A380821(2,1) = 7, the long leg is A380821(2,2) = 24 and the hypotenuse is A380821(2,3) = 25 so the semiperimeter is then a(2) = (7 + 24 + 25)/2 = 28.
%t A380823 a=Table[LucasL[n],{n,0,30}];Apply[Join,Map[{(#+1)(2#+1)}&,a]]
%Y A380823 Cf. A380821, A380824, A381721, A000032.
%K A380823 nonn,easy
%O A380823 0,1
%A A380823 _Miguel-Ángel Pérez García-Ortega_, Feb 04 2025