cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380824 Area of the unique primitive Pythagorean triple whose inradius is A000032(n) and such that its long leg and its hypotenuse are consecutive natural numbers.

This page as a plain text file.
%I A380824 #20 Mar 14 2025 21:30:53
%S A380824 30,6,84,180,840,3036,12654,51330,214320,895356,3767244,15880200,
%T A380824 67083870,283656366,1200287004,5081015940,21514542240,91113336516,
%U A380824 385900503534,1634538491850,6923592200280,29327695892556,124231206250884,526244219948880,2229186359036190,9442932766091286
%N A380824 Area of the unique primitive Pythagorean triple whose inradius is A000032(n) and such that its long leg and its hypotenuse are consecutive natural numbers.
%D A380824 Miguel Ángel Pérez García-Ortega, José Manuel Sánchez Muñoz and José Miguel Blanco Casado, El Libro de las Ternas Pitagóricas, Preprint 2025.
%H A380824 Miguel-Ángel Pérez García-Ortega, <a href="/A380824/a380824_1.pdf">El Libro de las Ternas Pitagóricas</a>
%F A380824 a(n) = (A380821(n,1) * A380821(n,2))/2.
%F A380824 a(n) = Lucas(n)*(Lucas(n) + 1)*(2*Lucas(n) + 1).
%e A380824 For n=2, the short leg is A380821(2,1) = 7 and the long leg is A380821(2,2) = 24 so the area is then a(2) = (7 * 24 )/2 = 84.
%t A380824 a=Table[LucasL[n],{n,0,30}];Apply[Join,Map[{#(#+1)(2#+1)}&,a]]
%Y A380824 Cf. A380821, A380823, A381721, A000032.
%K A380824 nonn,easy
%O A380824 0,1
%A A380824 _Miguel-Ángel Pérez García-Ortega_, Feb 04 2025