cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A380850 Greater of a pair of amicable numbers k < m such that s(k) = m and s(m) = k, where s(k) = A380845(k) - k is the sum of aliquot divisors of k that have the same binary weight as k.

Original entry on oeis.org

36068, 145124, 153670, 294075, 290532, 581348, 593100, 1099530, 2066625, 1237830, 2326244, 2338832, 2476870, 6393390, 4652772, 4883976, 6854625, 9279675, 9548325, 6514464, 11725857, 8760548, 9237668, 9305828, 9457356, 8717912, 12190132, 12353716, 10607740, 12493444
Offset: 1

Views

Author

Amiram Eldar, Feb 06 2025

Keywords

Comments

Analogous to amicable numbers (A002025 and A002046) with A380845 instead of A000203.
The terms are ordered according to their lesser counterparts (A380849).

Examples

			36068 is a term since A380845(36068) - 36068 = 27940 < 36068 and A380845(27940) - 27940 = 36068.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Module[{h = DigitCount[n, 2, 1]}, DivisorSum[n, # &, # < n && DigitCount[#, 2, 1] == h &]];
    seq[lim_] := Module[{s = {}, m}, Do[m = f[n]; If[m > n && f[m] == n, AppendTo[s, m]], {n, 1, lim}]; s]; seq[10^6]
  • PARI
    f(n) = {my(h = hammingweight(n)); sumdiv(n, d, d * (d < n && hammingweight(d) == h));}
    list(lim) = {my(m); for(n = 1, lim, m = f(n); if(m > n && f(m) == n, print1(m, ", ")));}

A383366 Smallest of a sociable triple i < j < k such that j = s(i), k = s(j), and i = s(k), where s(k) = A380845(k) - k is the sum of aliquot divisors of k that have the same binary weight as k.

Original entry on oeis.org

4400700, 12963816, 29878920, 38353800, 44973480, 51894304, 52208520, 67849656, 73134432, 81685080, 100711656, 103759848, 105096096, 113044896, 113161320, 114608032, 128639034, 135465912, 135559080, 136786200, 139242740, 148758120, 156686088, 159628350, 171090416
Offset: 1

Views

Author

Amiram Eldar, Apr 24 2025

Keywords

Examples

			4400700 is a term since s(4400700) = 4840770, s(4840770) = 5456868, and s(5456868) = 4400700.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Module[{h = DigitCount[n, 2, 1]}, DivisorSum[n, # &, # < n && DigitCount[#, 2, 1] == h &]]; q[k_] := Module[{k1 = f[k], k2}, If[k1 <= k, False, k2 = f[k1]; k2 > k && f[k2] == k]]; Select[Range[13000000], q]
  • PARI
    f(n) = {my(h = hammingweight(n)); sumdiv(n, d, d * (d < n && hammingweight(d) == h)); }
    isok(k) = {my(k1 = f(k), k2); if(k1 <= k, 0, k2 = f(k1); k2 > k && f(k2) == k);}
Showing 1-2 of 2 results.