A380850 Greater of a pair of amicable numbers k < m such that s(k) = m and s(m) = k, where s(k) = A380845(k) - k is the sum of aliquot divisors of k that have the same binary weight as k.
36068, 145124, 153670, 294075, 290532, 581348, 593100, 1099530, 2066625, 1237830, 2326244, 2338832, 2476870, 6393390, 4652772, 4883976, 6854625, 9279675, 9548325, 6514464, 11725857, 8760548, 9237668, 9305828, 9457356, 8717912, 12190132, 12353716, 10607740, 12493444
Offset: 1
Examples
36068 is a term since A380845(36068) - 36068 = 27940 < 36068 and A380845(27940) - 27940 = 36068.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..12000
Programs
-
Mathematica
f[n_] := Module[{h = DigitCount[n, 2, 1]}, DivisorSum[n, # &, # < n && DigitCount[#, 2, 1] == h &]]; seq[lim_] := Module[{s = {}, m}, Do[m = f[n]; If[m > n && f[m] == n, AppendTo[s, m]], {n, 1, lim}]; s]; seq[10^6]
-
PARI
f(n) = {my(h = hammingweight(n)); sumdiv(n, d, d * (d < n && hammingweight(d) == h));} list(lim) = {my(m); for(n = 1, lim, m = f(n); if(m > n && f(m) == n, print1(m, ", ")));}
Comments