A380851 Riordan array ((1-x)^(m-1), x/(1-x)) with factor r^(2*n) on row n, for m = 3/2, r = 2.
1, -2, 4, -2, 8, 16, -4, 24, 96, 64, -10, 80, 480, 640, 256, -28, 280, 2240, 4480, 3584, 1024, -84, 1008, 10080, 26880, 32256, 18432, 4096, -264, 3696, 44352, 147840, 236544, 202752, 90112, 16384, -858, 13728, 192192, 768768, 1537536, 1757184, 1171456, 425984, 65536
Offset: 0
Examples
Triangle starts: k = 0 1 2 3 4 5 6 n=0: 1; n=1: -2, 4; n=2: -2, 8, 16; n=3: -4, 24, 96, 64; n=4: -10, 80, 480, 640, 256; n=5: -28, 280, 2240, 4480, 3584, 1024; n=6: -84, 1008, 10080, 26880, 32256, 18432, 4096;
Links
- Igor Victorovich Statsenko, Identification of Riordan generalizations of binomial coefficients, Innovation science No 02-1, State Ufa, Aeterna Publishing House, 2025, pp. 11-18, see table 10. In Russian.
Crossrefs
Programs
-
Maple
T:=(m,r,n,k)->add(binomial(i+m,m)*binomial(n+1,n-k-i)*r^(2*n)*(-1)^(i),i=0..n-k): m:=3/2: r:=2: seq(print(seq(T(m,r,n,k), k=0..n)), n=0..10);
-
Mathematica
T[n_, k_] := 4^n Binomial[n, k] Hypergeometric2F1[3/2, k - n, k + 1, 1]; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Peter Luschny, Feb 07 2025 *)
-
SageMath
# Using function riordan_array from A256893. RA = riordan_array((1 - x)^(3/2 - 1), x/(1-x), 7) for n in range(7): print(4^n * RA.row(n)[:n+1]) # Peter Luschny, Feb 28 2025
Formula
T(n,k) = Sum_{i=0..n-k} binomial(i+m, m)*binomial(n+1, n-k-i)*r^(2*n)*(-1)^(i), for m = 3/2 and r = 2.
From Peter Luschny, Feb 07 2025: (Start)
T(n,k) = r^(2*n)*JacobiP(n - k, 1 + k, m - 1 - n, -1).
T(n,k) = 4^n*binomial(n, k)*hypergeom([3/2, k - n], [k + 1], 1). (End)