cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380857 Squares of numbers that are neither squarefree nor prime powers.

This page as a plain text file.
%I A380857 #16 Feb 08 2025 23:34:27
%S A380857 144,324,400,576,784,1296,1600,1936,2025,2304,2500,2704,2916,3136,
%T A380857 3600,3969,4624,5184,5625,5776,6400,7056,7744,8100,8464,9216,9604,
%U A380857 9801,10000,10816,11664,12544,13456,13689,14400,15376,15876,17424,18225,18496,19600,20736
%N A380857 Squares of numbers that are neither squarefree nor prime powers.
%C A380857 Proper subset of A359280 which is a proper subset of A286708 (powerful numbers that are not prime powers, a proper subset of A126706).
%C A380857 Does not intersect A362605.
%H A380857 Michael De Vlieger, <a href="/A380857/b380857.txt">Table of n, a(n) for n = 1..10000</a>
%F A380857 a(n) = A126706(n)^2.
%F A380857 Sum_{n>=1} 1/a(n) = Pi^2/6 - 15/Pi^2 - Sum_{p prime} 1/(p^2*(p^2-1)) = A013661 - A082020 + A085548 - A154945 = 0.025670434597226178881... . - _Amiram Eldar_, Feb 08 2025
%t A380857 Select[Range[150], Nor[PrimePowerQ[#], SquareFreeQ[#]] &]^2
%o A380857 (PARI) isok(k) = !issquarefree(k) && !isprimepower(k); \\ A126706
%o A380857 apply(sqr, select(isok, [1..200])) \\ _Michel Marcus_, Feb 07 2025
%o A380857 (Python)
%o A380857 from math import isqrt
%o A380857 from sympy import primepi, integer_nthroot, mobius
%o A380857 def A380857(n):
%o A380857     def bisection(f,kmin=0,kmax=1):
%o A380857         while f(kmax) > kmax: kmax <<= 1
%o A380857         kmin = kmax >> 1
%o A380857         while kmax-kmin > 1:
%o A380857             kmid = kmax+kmin>>1
%o A380857             if f(kmid) <= kmid:
%o A380857                 kmax = kmid
%o A380857             else:
%o A380857                 kmin = kmid
%o A380857         return kmax
%o A380857     def f(x): return int(n+sum(primepi(integer_nthroot(x,k)[0]) for k in range(2,x.bit_length()))+sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)))
%o A380857     return bisection(f,n,n)**2 # _Chai Wah Wu_, Feb 08 2025
%Y A380857 Cf. A059404, A126706, A177492 (k^2 for k in A120944), A286708, A359280, A362605, A378768 (k^2 for k in A286708).
%Y A380857 Cf. A013661, A082020, A085548, A154945.
%K A380857 nonn,easy
%O A380857 1,1
%A A380857 _Michael De Vlieger_, Feb 06 2025