This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A380857 #16 Feb 08 2025 23:34:27 %S A380857 144,324,400,576,784,1296,1600,1936,2025,2304,2500,2704,2916,3136, %T A380857 3600,3969,4624,5184,5625,5776,6400,7056,7744,8100,8464,9216,9604, %U A380857 9801,10000,10816,11664,12544,13456,13689,14400,15376,15876,17424,18225,18496,19600,20736 %N A380857 Squares of numbers that are neither squarefree nor prime powers. %C A380857 Proper subset of A359280 which is a proper subset of A286708 (powerful numbers that are not prime powers, a proper subset of A126706). %C A380857 Does not intersect A362605. %H A380857 Michael De Vlieger, <a href="/A380857/b380857.txt">Table of n, a(n) for n = 1..10000</a> %F A380857 a(n) = A126706(n)^2. %F A380857 Sum_{n>=1} 1/a(n) = Pi^2/6 - 15/Pi^2 - Sum_{p prime} 1/(p^2*(p^2-1)) = A013661 - A082020 + A085548 - A154945 = 0.025670434597226178881... . - _Amiram Eldar_, Feb 08 2025 %t A380857 Select[Range[150], Nor[PrimePowerQ[#], SquareFreeQ[#]] &]^2 %o A380857 (PARI) isok(k) = !issquarefree(k) && !isprimepower(k); \\ A126706 %o A380857 apply(sqr, select(isok, [1..200])) \\ _Michel Marcus_, Feb 07 2025 %o A380857 (Python) %o A380857 from math import isqrt %o A380857 from sympy import primepi, integer_nthroot, mobius %o A380857 def A380857(n): %o A380857 def bisection(f,kmin=0,kmax=1): %o A380857 while f(kmax) > kmax: kmax <<= 1 %o A380857 kmin = kmax >> 1 %o A380857 while kmax-kmin > 1: %o A380857 kmid = kmax+kmin>>1 %o A380857 if f(kmid) <= kmid: %o A380857 kmax = kmid %o A380857 else: %o A380857 kmin = kmid %o A380857 return kmax %o A380857 def f(x): return int(n+sum(primepi(integer_nthroot(x,k)[0]) for k in range(2,x.bit_length()))+sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))) %o A380857 return bisection(f,n,n)**2 # _Chai Wah Wu_, Feb 08 2025 %Y A380857 Cf. A059404, A126706, A177492 (k^2 for k in A120944), A286708, A359280, A362605, A378768 (k^2 for k in A286708). %Y A380857 Cf. A013661, A082020, A085548, A154945. %K A380857 nonn,easy %O A380857 1,1 %A A380857 _Michael De Vlieger_, Feb 06 2025