cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380860 Triangle read by rows: T(n,m) (0<=m<=n) = number of positive n-digit numbers that have exactly m copies of a specific, previously selected positive base-10 digit among its digits.

Original entry on oeis.org

1, 8, 1, 72, 17, 1, 648, 225, 26, 1, 5832, 2673, 459, 35, 1, 52488, 29889, 6804, 774, 44, 1, 472392, 321489, 91125, 13770, 1170, 53, 1, 4251528, 3365793, 1141614, 215055, 24300, 1647, 62, 1, 38263752, 34543665, 13640319, 3077109, 433755, 39123, 2205, 71, 1, 344373768, 349156737, 157306536, 41334300, 6980904, 785862, 58968, 2844, 80, 1
Offset: 0

Views

Author

Peter Starek, Feb 06 2025

Keywords

Examples

			Rows n=0..7 of the triangle are:
        1;
        8,       1;
       72,      17,       1;
      648,     225,      26,      1;
     5832,    2673,     459,     35,     1;
    52488,   29889,    6804,    774,    44,    1;
   472392,  321489,   91125,  13770,  1170,   53,  1;
  4251528, 3365793, 1141614, 215055, 24300, 1647, 62, 1;
  ...
		

Crossrefs

Row sums give A052268 (for n>=1).
Columns k=0-1 give: A055275, A081044(n-1) (for n>=1).

Programs

  • Maple
    seq(lprint(seq(floor(9^(n-m)*(binomial(n-1, m-1)+(8/9)*binomial(n-1, m))), m=0..n)), n=0..7);
  • Mathematica
    A380860[n_, m_] := Floor[9^(n-m)*(Binomial[n-1, m-1] + 8/9*Binomial[n-1, m])];
    Table[A380860[n, m], {n, 0, 10}, {m, 0, n}] (* Paolo Xausa, Feb 07 2025 *)

Formula

T(n,m) = floor(9^(n-m)*(binomial(n-1,m-1)+8/9*binomial(n-1,m))), considering binomial(k,-1)=0 for k>=0 and binomial(k,l)=0 for k>=0 with k