This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A380862 #11 Feb 08 2025 03:43:47 %S A380862 1,5,1,7,9,8,5,3,7,7,4,6,0,2,1,5,4,6,3,6,0,2,1,9,1,3,5,7,3,8,6,0,7,2, %T A380862 4,4,8,1,7,1,2,3,3,3,8,2,5,2,7,1,6,7,2,3,0,1,0,8,0,7,6,0,2,2,4,5,5,8, %U A380862 8,5,1,8,3,5,3,0,5,5,1,6,4,4,8,8,2,5,1,1,8,9 %N A380862 Decimal expansion of the largest acute angles, in radians, in a deltoidal hexecontahedron face. %C A380862 A deltoidal hexecontahedron face is a kite with one smallest acute angle (A380861), two largest acute angles (this constant) and one obtuse angle (A380863). %H A380862 Paolo Xausa, <a href="/A380862/b380862.txt">Table of n, a(n) for n = 1..10000</a> %H A380862 Wikipedia, <a href="https://en.wikipedia.org/wiki/Deltoidal_hexecontahedron">Deltoidal hexecontahedron</a>. %F A380862 Equals arccos(1/2 - 1/sqrt(5)) = arccos(1/2 - A020762). %F A380862 Equals (2*Pi - A380861 - A380863)/2. %e A380862 1.517985377460215463602191357386072448171233382527... %t A380862 First[RealDigits[ArcCos[1/2 - 1/Sqrt[5]], 10, 100]] %Y A380862 Cf. A020762, A379385, A379386, A379387, A379388, A379389, A380861, A380863. %K A380862 nonn,cons,easy %O A380862 1,2 %A A380862 _Paolo Xausa_, Feb 06 2025