This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A380865 #11 Feb 08 2025 04:48:20 %S A380865 1,2,4,6,24,16,20,120,160,64,70,560,1120,896,256,252,2520,6720,8064, %T A380865 4608,1024,924,11088,36960,59136,50688,22528,4096,3432,48048,192192, %U A380865 384384,439296,292864,106496,16384,12870,205920,960960,2306304,3294720,2928640,1597440,491520,65536 %N A380865 Triangle read by rows: T(n, k) = 2^(2*n)*JacobiP(n - k, k, -1/2 - n, -1). %F A380865 Consider a family of Jacobi polynomials defined with a rational number r as %F A380865 J(n, k, r, x) = denominator(r)^(2*n)*JacobiP(n - k, k, r - n, x). %F A380865 For r = -1/2 and x = -1 is J(n, k, r, x) = T(n, k). %F A380865 For r = 1/2 and x = -1 is J(n, k, r, x) = A380851(n, k). %F A380865 For r = 1/2 or r = -1/2 and x = 1 is J(n, k, r, x) = A038234(n, k). %F A380865 The choice r = n and x = -1 gives Riordan array A097807, (1/(1 + x), 1). %F A380865 The choice r = k and x = -1 gives Riordan array A128908, (1, x/(1 - x)^2). %F A380865 The choice r = n and x = 1 gives the Pascal triangle. %F A380865 T(n, k) = 4^n*binomial(n, k)*hypergeom([1/2, k - n], [k + 1], 1). %e A380865 Triangle begins: %e A380865 [0] 1; %e A380865 [1] 2, 4; %e A380865 [2] 6, 24, 16; %e A380865 [3] 20, 120, 160, 64; %e A380865 [4] 70, 560, 1120, 896, 256; %e A380865 [5] 252, 2520, 6720, 8064, 4608, 1024; %e A380865 [6] 924, 11088, 36960, 59136, 50688, 22528, 4096; %e A380865 [7] 3432, 48048, 192192, 384384, 439296, 292864, 106496, 16384; %p A380865 T := (n, k) -> 2^(2*n)*JacobiP(n - k, k, -1/2 - n, -1): %p A380865 seq(print(seq(simplify(T(n, k)), k=0..n)), n=0..9); %t A380865 T[n_, k_] := 4^n Binomial[n, k] Hypergeometric2F1[1/2, k - n, k + 1, 1]; %t A380865 Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten %Y A380865 Cf. A038234, A380851, A097807, A128908, A380864 (row sums). %K A380865 nonn,tabl %O A380865 0,2 %A A380865 _Peter Luschny_, Feb 07 2025