A380867 Numbers k such that one can make a rectangle from a chain of linked rods of length 1, 2, 3, ..., k, with perimeter equal to the total length.
8, 15, 20, 24, 27, 32, 35, 39, 44, 48, 51, 55, 56, 63, 68, 75, 80, 84, 87, 92, 95, 99, 104, 111, 115, 116, 119, 120, 123, 124, 128, 132, 135, 140, 143, 144, 147, 152, 155, 159, 160, 164, 168, 171, 175, 176, 183, 184, 188, 195, 200, 203, 204, 207, 208, 212, 215, 216, 219, 220, 224, 231, 235, 236
Offset: 1
Examples
The smallest such number is a(1) = 8, for which we have (n1..n4) = (2, 4, 6, 7), that is, the rectangle: o--+--o--o--+--+--+--+--+--+--+--o | 2 1 8 | |3 | | | o 7 | | |4 | | | | 5 6 | o--+--+--+--+--o--+--+--+--+--+--o This is a special case of the 2-dimensional closed-loop self-avoiding paths on a square lattice considered in A334720.
Links
- Daniel Mondot, Table of n, a(n) for n = 1..10000
Programs
-
PARI
T(n)=n*(n+1)/2 /* = A000217 */ select( {is_A380867(n)=my(Tn=T(n), T1, T2, T3, T4, n3, n4); Tn%2==0 && forstep(n1=n-1, 3, -1, T1=T(n1); forstep(n2=n1-1,2,-1, (B = Tn/2 - A = T1 - T2 = T(n2)) < 3 && break; iferr((1+n3=sqrtint(2*T3 = T2-B))*n3==2*T3 && (1+n4=sqrtint(2*T4 = T3-A))*n4==2*T4 && return(n), E,)))}, [1..99])
Comments