A380871 Limit of the trajectory of n under A380873: concatenate sum and product of digits, if it ends on a fixed point, otherwise the least element of the limit cycle.
0, 50, 70, 70, 70, 80, 1236, 40, 88, 10, 10, 50, 50, 60, 20, 50, 70, 50, 70, 10, 20, 50, 70, 50, 70, 80, 70, 10, 80, 90, 30, 60, 50, 70, 60, 90, 90, 40, 88, 90, 40, 20, 70, 60, 70, 20, 70, 40, 70, 10, 50, 50, 80, 90, 20, 80, 50, 50, 80, 40, 60, 70, 70, 90, 70, 50, 1236, 70, 70, 70, 70, 50, 10
Offset: 0
Keywords
Examples
The trajectory of n = 1 under A380873 is: 1 -> concat(1, 1) = 11 -> concat(1+1, 1*1) = 21 -> concat(2+1, 2*1) = 32 -> concat(3+2, 3*2) = 56 -> concat(3+2, 3*2) = 1130 -> concat(1+1+3+0, 1*1*3*0) = 50 -> concat(5+0, 5*0) = 50, so a fixed point is reached, and a(1) = 50. The trajectory of n = 8 under A380873 is: 8 -> concat(8, 8) = 88 -> concat(8+8, 8*8) = 1664 -> concat(1+6+6+4, 1*6*6*4) = 17144 -> concat(1+7+1+4+4, 1*7*1*4*4) = 17112 -> concat(1+7+1+1+2, 1*7*1*1*2) = 1214 -> concat(1+2+1+4, 1*2*1*4) = 88 -> 1664 etc.: here the limit 5-cycle C(88) = (88, 1664, 17144, 17112, 1214) is reached, so a(8) = min(C(88)) = 88.
Comments