This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A380872 #15 Apr 04 2025 22:37:13 %S A380872 0,0,1,0,11,2,0,21,22,3,0,32,44,33,4,0,56,816,69,44,5,0,1130,1548, %T A380872 1554,816,55,6,0,50,18160,15100,1548,1025,66,7,0,50,160,70,18160,80, %U A380872 1236,77,8,0,50,70,70,160,80,1236,1449,88,9,0,50,70,70,70,80,1236,18144,1664,99,10,0,50,70,70,70,80,1236,18128,17144,1881,10,11,0,50,70,70,70,80,1236,20128,17112,1864 %N A380872 Infinite square array, where row r >= 0 is the orbit of r under the map A380873: concatenate(sum of digits, product of digits). %C A380872 As usual and required by the "table" display function, the array is read by falling antidiagonals. %F A380872 A(r,0) = r; A(r,n+1) = A380873(A(r,n)) = concat(A007953(A(r,n)), A007954(A(r,n))). %e A380872 The array starts as follows: (Elements in column 0 are also equal to the row index.) %e A380872 col.0| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 %e A380872 -----+----+----+-----+-----+-----+----+----+-----+-----+-----+-----+----+-----+----- %e A380872 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 %e A380872 1 11 21 32 56 1130 50 50 50 50 50 50 50 50 50 %e A380872 2 22 44 816 1548 18160 160 70 70 70 70 70 70 70 70 %e A380872 3 33 69 1554 15100 70 70 70 70 70 70 70 70 70 70 %e A380872 4 44 816 1548 18160 160 70 70 70 70 70 70 70 70 70 %e A380872 5 55 1025 80 80 80 80 80 80 80 80 80 80 80 80 %e A380872 6 66 1236 1236 1236 1236 1236 1236 1236 1236 1236 1236 1236 1236 1236 %e A380872 7 77 1449 18144 18128 20128 130 40 40 40 40 40 40 40 40 %e A380872 8 88 1664 17144 17112 1214 88 1664 17144 17112 1214 88 1664 17144 17112 %e A380872 9 99 1881 1864 19192 22162 1348 1696 22324 1396 19162 19108 190 100 10 %e A380872 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 %e A380872 11 21 32 56 1130 50 50 50 50 50 50 50 50 50 50 %e A380872 ... ... ... %e A380872 For example, row 1 is the trajectory of 1 under the map A380873: 1 -> concat (1,1) = 11 -> concat(1+1, 1*1) = 21 -> concat(2+1,2*1) = 32 -> concat(3+2,3*2) = 56 -> ... %e A380872 Most of the initial rows reach a fixed point after not too many iterations, but for example row 8 (A271268) and also 38, 83, 88, 146,... reach a cycle of length 5, C(88) = (88, 1664, 17144, 17112, 1214). Another 5-cycle is C(18168) = (18168, 24384, 21768, 24672, 21672), first reached in row 188 and 233. %e A380872 Fixed points (see A062237) are the multiples of 10 less than 100, and 119 and 1236 (for row 6, 66, 123, ...), 19144 (row 289), and others. %o A380872 (PARI) A380872_row(r, num_columns=30)=vector(num_columns, i, r=if(i>1, eval(Str(vecsum(r=digits(r)), if(r, vecprod(r)))), r)) %o A380872 A380872_array(rows=9, cols=rows)=Mat(vectorv(rows,i,A380872_row(i-1, cols))) %Y A380872 Cf. A380873 (iterated function), A007953 (sum of digits), A007954 (product of digits). %Y A380872 Cf. A271220 (row 6), A271268 (row 8). %K A380872 nonn,base,tabl %O A380872 0,5 %A A380872 _M. F. Hasler_, Apr 01 2025