cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380886 Triangle T(n,k), 1<=k<=n: column k are the coefficients of the INVERT transform of Sum_{i=1..k} i*x^i.

Original entry on oeis.org

1, 1, 3, 1, 5, 8, 1, 11, 17, 21, 1, 21, 42, 50, 55, 1, 43, 100, 128, 138, 144, 1, 85, 235, 323, 358, 370, 377, 1, 171, 561, 813, 923, 965, 979, 987, 1, 341, 1331, 2043, 2378, 2510, 2559, 2575, 2584, 1, 683, 3158, 5150, 6125, 6527, 6681, 6737, 6755, 6765, 1, 1365, 7503, 12967, 15772, 16972, 17441, 17617, 17680, 17700, 17711
Offset: 1

Views

Author

R. J. Mathar, Feb 07 2025

Keywords

Examples

			The full array starts
  1    1    1    1    1    1    1    1    1    1
  1    3    3    3    3    3    3    3    3    3
  1    5    8    8    8    8    8    8    8    8
  1   11   17   21   21   21   21   21   21   21
  1   21   42   50   55   55   55   55   55   55
  1   43  100  128  138  144  144  144  144  144
  1   85  235  323  358  370  377  377  377  377
  1  171  561  813  923  965  979  987  987  987
  1  341 1331 2043 2378 2510 2559 2575 2584 2584
  1  683 3158 5150 6125 6527 6681 6737 6755 6765
but the non-interesting upper right triangular part is not put into the sequence.
		

Crossrefs

Cf. A001045 (column k=2), A101822 (column k=3), A322059 (column k=4?), A001906 (diagonal), A054452 (subdiagonal).

Programs

  • Maple
    A380886 := proc(n,k)
        local g,x ;
        g := 1/(1-add(i*x^i,i=1..k)) ;
        coeftayl(g,x=0,n) ;
    end proc:
    seq(seq( A380886(n,k),k=1..n),n=1..12) ;

Formula

T(n,k) = [x^n] 1/(1-x^1-2*x^2-3*x^3-4*x^4-...-k*x^k) .