cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380889 Integers k such that k = Sum k/(p_i + j), where p_i are the prime factors of k (with multiplicity). Case j = 1.

Original entry on oeis.org

8, 81, 90, 100, 132, 1125, 1250, 1323, 1470, 1485, 1650, 2156, 2178, 2420, 2898, 3220, 6348, 6612, 12948, 15625, 18375, 20625, 21609, 24010, 24255, 26950, 27225, 30250, 35574, 35937, 36225, 39930, 40250, 47334, 47817, 53130, 58564, 71415, 74385, 77924, 79350
Offset: 1

Views

Author

Paolo P. Lava, Feb 07 2025

Keywords

Comments

Are there other squarefree integers besides 53130?

Examples

			53130 = 2*3*5*7*11*23 = 53130/(2+1) + 53130/(3+1) + 53130/(5+1) + 53130/(7+1) + 53130/(11+1) + 53130/(23+1);
124722 = 2*3^2*13^2*41 = 124722/(2+1) + 124722*2/(3+1) + 124722*2/(13+1) + 124722/(41+1).
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q,h) local k,n,v; v:=[];
    for n from 1 to q do if n=add(n*k[2]/(k[1]+h),k=ifactors(n)[2]) then v:=[op(v),n]; fi;
    od; op(v); end: P(79350,1);