A380890 Triangle T(n,k) read by rows: the number of graphs with n nodes which are enriched cycles (necklaces) and the elements in the cycle are marked linear chains up to length k.
1, 1, 2, 1, 2, 4, 1, 3, 5, 7, 1, 3, 7, 9, 12, 1, 5, 14, 18, 21, 24, 1, 5, 19, 29, 35, 38, 42, 1, 8, 35, 56, 71, 77, 81, 85, 1, 10, 60, 100, 133, 148, 156, 160, 165, 1, 15, 107, 192, 264, 297, 317, 325, 330, 335, 1, 19, 187, 361, 511, 586, 630, 650, 660, 665, 671, 1, 31, 352, 714, 1041, 1206, 1306, 1350, 1375, 1385, 1391, 1397
Offset: 1
Examples
The full array starts 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 1 2 4 4 4 4 4 4 4 4 4 4 1 3 5 7 7 7 7 7 7 7 7 7 1 3 7 9 12 12 12 12 12 12 12 12 1 5 14 18 21 24 24 24 24 24 24 24 1 5 19 29 35 38 42 42 42 42 42 42 1 8 35 56 71 77 81 85 85 85 85 85 1 10 60 100 133 148 156 160 165 165 165 165 1 15 107 192 264 297 317 325 330 335 335 335 1 19 187 361 511 586 630 650 660 665 671 671 1 31 352 714 1041 1206 1306 1350 1375 1385 1391 1397 The sequence gathers only the non-trivial lower left triangle up to the diagonal. T(1,k)=1 means whatever the set of variable-length linear chains is, if the total number of nodes is 1 only the linear chain of length 1 (ring of a single element) is a necklace. T(n,1)=1 means the only available element in the necklace are simple (marked) nodes. To generate a enriched necklace with n nodes in total can only be done by putting that node n times repeated on a circle. T(4,3)=5 means the available chains up to length k=3 are x, x-o, x-o-o and o-x-o; x denotes the marked node. The 5 cycles/necklaces with n=4 nodes are: [x]-[x]-[x]-[x], [x]-[x]-[x-o], [x-o]-[x-o], [x]-[x-o-o], and [x]-[o-x-o], where [...] is the a linear node in the circle.
Links
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, pages 1001-1002.
- C. G. Bower, Transforms (2)
- Index entries for sequences related to necklaces
Programs
-
Maple
# Generating function of a marked linear chain # (=rooted linear tree) up to n nodes. # Essentially a truncated (polynomial) version of A110654. # @param n Number of nodes # @param x free variable in the o.g.f. gLinChain := proc(n,x) add(floor((i+1)/2) *x^i,i=1..n) ; end proc: # k: max element in each chain # n: number of total nodes in graph A380890 := proc(n,k) local x,g ,cidx,d,gd,ncyc; # number of possible elements in the cycle g := gLinChain(k,x) ; # wrap g into the Polya cycle index of the cyclic group C_ncyc cidx := 0 ; for ncyc from 1 to n do for d in numtheory[divisors](ncyc) do gd := subs(x=x^d,g) ; cidx := cidx+1/ncyc*numtheory[phi](d)*gd^(ncyc/d) ; end do: end do: coeff(cidx,x^n) ; end proc: seq(seq(A380890(n,k),k=1..n),n=1..12) ;
Comments