A380893 Triangle read by rows: T(n,m) = number of solid partitions of n with shape of a plane partition of m.
1, 1, 3, 1, 3, 6, 1, 6, 6, 13, 1, 6, 15, 13, 24, 1, 9, 21, 37, 24, 48, 1, 9, 30, 58, 75, 48, 86, 1, 12, 39, 95, 132, 159, 86, 160, 1, 12, 54, 128, 231, 297, 299, 160, 282, 1, 15, 63, 197, 345, 552, 593, 574, 282, 500, 1, 15, 81, 251, 546, 873, 1156, 1180, 1038, 500, 859, 1, 18, 96, 345, 771, 1452, 1933, 2390, 2208, 1874, 859, 1479, 1, 18, 114, 432, 1110, 2151, 3340, 4154, 4614, 4082, 3268, 1479, 2485, 1, 21, 132, 558, 1491, 3276, 5214, 7430, 8310, 8758, 7276, 5685, 2485, 4167
Offset: 1
Examples
Table starts as: 1, 1,3 1,3,6 1,6,6,13 1,6,15,13,24 1,9,21,37,24,48 T(4,2) = 6 since the solid partitions of 4 with shapes a plane partition of 2 are: z[{{2,2}}], z[{{3,1}}], z[{{2},{2}}], z[{{3},{1}}], z[{{3}},{{1}}], z[{{2}},{{2}}] with shapes equal to these plane partitions: {{2}}, {{2}}, {{1,1}}, {{1,1}}, {{1},{1}}, {{1},{1}}
Links
- Wouter Meeussen, Mma functions for plane and solid partitions
Programs
-
Mathematica
Table[Tr@(Count[First[lapse[#]]&/@Flatten[sols=Table[solidformBTK[par],{par,IntegerPartitions[n]}] ],#]&/@planepartitions[k]),{n,10},{k,n}] (* using functions from link above, or with the faster second program: *) Table[ Sum[Length[solidformBTK[TransposePartition@par]],{par,IntegerPartitions[n,{k}]} ],{n,16},{k,n}] (* with transposePartition[par:{Integer..}]:=Count[par,i/;i>=#]&/@Range[Max[par]] *)
Comments