This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A380910 #15 Feb 11 2025 04:41:29 %S A380910 1,1,1,2,3,8,5,16,35,128,63,256,231,1024,429,2048,6435,32768,12155, %T A380910 65536,46189,262144,88179,524288,676039,4194304,1300075,8388608, %U A380910 5014575,33554432,9694845,67108864,300540195,2147483648,583401555,4294967296,2268783825,17179869184 %N A380910 a(n) = denominator(n!! / (n - 1)!!). %H A380910 Paolo Xausa, <a href="/A380910/b380910.txt">Table of n, a(n) for n = 0..1000</a> %H A380910 <a href="https://dlmf.nist.gov/5.4#i">Gamma Function</a>, Digital library of mathematical functions, Feb. 2024. %F A380910 r(n) = ((n/2)! / ((n - 1) / 2)!) * [sqrt(Pi) if n is even otherwise 2/sqrt(Pi)]. %F A380910 a(n) = denominator(r(n)). %F A380910 a(n) = A004730(n-1). - _R. J. Mathar_, Feb 10 2025 %F A380910 a(n) = A006882(n-1)/A095987(n). - _R. J. Mathar_, Feb 10 2025 %p A380910 seq(denom(doublefactorial(n) / doublefactorial(n - 1)), n = 0..20); %p A380910 # Alternative: %p A380910 a := n -> denom((GAMMA(n/2 + 1) / GAMMA(n/2 + 1/2)) * ifelse(n::even, sqrt(Pi), 2/sqrt(Pi))): %p A380910 seq(a(n), n = 0..35); %t A380910 A380910[n_] := Denominator[n!!/(n - 1)!!]; Array[A380910, 50, 0] (* or *) %t A380910 Denominator[FoldList[#2/# &, 1, Range[49]]] (* _Paolo Xausa_, Feb 11 2025 *) %o A380910 (Python) %o A380910 from fractions import Fraction %o A380910 from functools import cache %o A380910 @cache %o A380910 def R(n: int) -> Fraction: %o A380910 if n == 0: return Fraction(1, 1) %o A380910 return Fraction(n, 1) / R(n - 1) %o A380910 def aList(upto:int) -> list[int]: %o A380910 return [R(n).denominator for n in range(upto + 1)] %o A380910 print(aList(37)) %Y A380910 Cf. A380909 (numerator). %Y A380910 Cf. A004730, A004731. %K A380910 nonn,frac %O A380910 0,4 %A A380910 _Peter Luschny_, Feb 09 2025