A380922 Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + 1/p^s + 1/p^(3*s)).
1, 2, 2, 2, 2, 4, 2, 3, 2, 4, 2, 4, 2, 4, 4, 3, 2, 4, 2, 4, 4, 4, 2, 6, 2, 4, 3, 4, 2, 8, 2, 3, 4, 4, 4, 4, 2, 4, 4, 6, 2, 8, 2, 4, 4, 4, 2, 6, 2, 4, 4, 4, 2, 6, 4, 6, 4, 4, 2, 8, 2, 4, 4, 3, 4, 8, 2, 4, 4, 8, 2, 6, 2, 4, 4, 4, 4, 8, 2, 6, 3, 4, 2, 8, 4, 4, 4, 6, 2, 8, 4, 4, 4, 4, 4, 6, 2, 4, 4, 4
Offset: 1
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..10000
- Vaclav Kotesovec, Graph - the asymptotic ratio (10000 terms)
Crossrefs
Programs
-
Mathematica
f[p_, e_] := If[e < 3, 2, 3]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Apr 22 2025 *)
-
PARI
for(n=1, 100, print1(direuler(p=2, n, 1/(1-X) * (1 + X + X^3))[n], ", "))
Formula
Let f(s) = Product_{p prime} (1 - 1/p^(2*s) + 1/p^(3*s) - 1/p^(4*s)).
Dirichlet g.f.: zeta(s)^2 * f(s).
Sum_{k=1..n} a(k) ~ f(1) * n * (log(n) + 2*gamma - 1 + f'(1)/f(1)), where
f(1) = Product_{p prime} (1 - 1/p^2 + 1/p^3 - 1/p^4) = 0.684286924186862318141968725791218083472312736723163777284618226290055...,
f'(1) = f(1) * Sum_{p prime} (2*p^2 - 3*p + 4) * log(p) / ((p-1) * (p^3 + p^2 + 1)) = f(1) * 0.85825768698295295413525347933038488513032293516964600096226328323449...
and gamma is the Euler-Mascheroni constant A001620.
Multiplicative with a(p^e) = 2 if e <= 2 and 3 otherwise. - Amiram Eldar, Apr 22 2025
Comments