A380926 Integers k such that k = Sum k/(p_i + j), where p_i are the prime factors of k (with multiplicity). Case j = 4.
64, 2000, 2187, 2448, 62500, 76500, 93636, 110484, 159300, 514836, 1953125, 2390625, 2576816, 2926125, 3452625, 3581577, 4009008, 4226013, 4365680, 4615408, 4730352, 4866800, 4978125, 5581488, 6084477, 6093225, 6810608, 6820400, 7396400, 8047600, 8909109, 9456240
Offset: 1
Examples
514836 = 2^2*3^4*7*227 = 514836*2/(2+4) + 514836*4/(3+4) + 514836/(7+4) + 514836/(227+4)
Programs
-
Maple
with(numtheory): P:=proc(q, h) local k, n, v; v:=[]; for n from 1 to q do if n=add(n*k[2]/(k[1]+h), k=ifactors(n)[2]) then v:=[op(v), n]; fi; od; op(v); end: P(9456240, 4);