A380927 Integers k such that k = Sum k/(p_i + j), where p_i are the prime factors of k (with multiplicity). Case j = -5.
49, 1029, 9317, 11858, 15092, 19208, 21609, 195657, 199927, 221221, 244783, 249018, 281554, 311542, 316932, 319319, 396508, 403368, 406406, 453789, 517244, 1771561, 2254714, 2869636, 3652264, 4108797, 4198467, 4645641, 4648336, 5140443, 5229378, 5812079, 5912634
Offset: 1
Examples
517244 = 2^2*7^3*13*29 = 517244*2/(2-5) +517244*3/(7-5) + 517244/(13-5) + 517244/(29-5)
Programs
-
Maple
with(numtheory): P:=proc(q, h) local k, n, v; v:=[]; for n from 1 to q do if n mod 5>0 then if n=add(n*k[2]/(k[1]+h), k=ifactors(n)[2]) then v:=[op(v), n]; fi; fi; od; op(v); end: P(6949250, -5);