This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A380933 #11 Feb 10 2025 01:40:42 %S A380933 121643775,157390064,161019495,275734304,584899875,1493214975, %T A380933 1614323655,2043708975,3081783375,3118599224,3426851295,3902652495, %U A380933 3947893424,5849043375,11731509855,12138531615,13008843224,14598032624,17588484584,19782621495,20191564575,20759209064 %N A380933 Numbers k such that k and k+1 are both in A380929. %C A380933 Numbers k such that A380845(k) > 2*k and A380845(k+1) > 2*(k+1). %H A380933 Amiram Eldar, <a href="/A380933/b380933.txt">Table of n, a(n) for n = 1..32</a> %e A380933 121643775 is a term since A380845(121643775) = 244722015 > 2 * 121643775 = 243287550, and A380845(121643776) = 256456081 > 2 * 121643776 = 243287552. %t A380933 q[k_] := Module[{h = DigitCount[k, 2, 1]}, DivisorSum[k, # &, DigitCount[#, 2, 1] == h &] > 2*k]; %t A380933 seq[lim_] := Module[{s = {}}, Do[If[q[k], If[q[k-1], AppendTo[s, k-1]]; If[q[k+1], AppendTo[s, k]]], {k, 3, lim, 2}]; s]; %t A380933 seq[3*10^8] %o A380933 (PARI) isab(k) = {my(h = hammingweight(k)); sumdiv(k, d, d*(hammingweight(d) == h)) > 2*k;} %o A380933 list(lim) = forstep(k = 3, lim, 2, if(isab(k), if(isab(k-1), print1(k-1, ", ")); if(isab(k+1), print1(k, ", ")))); %Y A380933 Subsequence of A096399 and A380929. %Y A380933 Cf. A380845, A380932. %Y A380933 Similar sequences: A283418, A318167, A327635, A327942, A331412, A333951, A357608, A364727, A364861. %K A380933 nonn,base %O A380933 1,1 %A A380933 _Amiram Eldar_, Feb 08 2025