This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A380934 #43 Apr 30 2025 23:17:37 %S A380934 1,4,5,12,13,14,15,32,33,34,35,36,37,38,39,80,81,82,83,84,85,86,87,88, %T A380934 89,90,91,92,93,94,95,192,193,194,195,196,197,198,199,200,201,202,203, %U A380934 204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219 %N A380934 Elias delta encoding of n converted from base 2 to integer. %C A380934 This is the Elias delta coding of n with leading zeros omited. %H A380934 Wikipedia, <a href="https://en.wikipedia.org/wiki/Elias_delta_coding">Elias delta coding</a> %e A380934 For n = 16 a(16) = 80 because: %e A380934 16 = 10000_2 and %e A380934 Strip leading bit of n = 0000_2. %e A380934 16 is of bitsize 5. %e A380934 Prepend 5-1 zeros and 5 as 101_2 %e A380934 0000101_2 + 0000_2 = 00001010000_2 = 80. %t A380934 A380934[n_] := FromDigits[Join[IntegerDigits[BitLength[n], 2], Rest[IntegerDigits[n, 2]]], 2] (* _James C. McMahon_, Apr 30 2025 *) %o A380934 (Python) %o A380934 def a(n): %o A380934 if n == 1: return 1 %o A380934 b = bin(n)[2:] %o A380934 L = len(b) %o A380934 g = '0' * (L - 1) + bin(L)[2:] %o A380934 d = g + b[1:] %o A380934 return int(d,2) %o A380934 print([a(n) for n in range(1,60)]) %o A380934 (Python) %o A380934 def A380934(n): return int(bin(n.bit_length())+bin(n)[3:],2) # _Chai Wah Wu_, Apr 21 2025 %Y A380934 Cf. A281150. %K A380934 nonn,base %O A380934 1,2 %A A380934 _DarĂo Clavijo_, Apr 21 2025