cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380943 Primes written in decimal representation by the concatenation of primes p and q such that the concatenation of q and p also forms a prime.

Original entry on oeis.org

37, 73, 113, 173, 197, 311, 313, 317, 331, 337, 359, 367, 373, 593, 617, 673, 719, 733, 761, 797, 977, 1093, 1097, 1123, 1277, 1319, 1361, 1373, 1783, 1913, 1931, 1979, 1997, 2293, 2297, 2311, 2347, 2389, 2713, 2837, 2971, 3109, 3119, 3137, 3191, 3229, 3271
Offset: 1

Views

Author

James C. McMahon, Apr 03 2025

Keywords

Comments

Member primes could be named Saint Patrick primes because the date of Saint Patrick's Day, March 17 (3/17), produces the terms 173 and 317.
The primes 37, 73, and 373 uniquely satisfy the requirements if cleaved at every possible position. - Robert G. Wilson v, May 03 2025

Examples

			Primes 173 and 317 are members because they are formed by the concatenation of 17 & 3  and 3 & 17, respectively.
While the concatenation of 13 and 7 forms the prime 137, it is not a member because the concatenation of 7 and 13 is 713, which is not prime.
		

Crossrefs

Subsequence of A019549 and A105184.
Cf. A133187.

Programs

  • Mathematica
    lim=3300; plim=Max[FromDigits[Rest[IntegerDigits[lim]]], FromDigits[Drop[IntegerDigits[lim], -1]]]; p=Prime[Range[PrimePi[plim]]];p2=Subsets[p,{2}];fp[{a_,b_}]:=FromDigits[Join[IntegerDigits[a],IntegerDigits[b]]];rfp[{a_,b_}]:=FromDigits[Join[IntegerDigits[b],IntegerDigits[a]]];pabba=Select[p2,PrimeQ[fp[#]]&&PrimeQ[rfp[#]]&];pp1=fp/@pabba;pp2=rfp/@pabba;Select[Union[Join[pp1,pp2]],#<=lim&]
  • Python
    from sympy import isprime
    def ok(n):
        if not isprime(n): return False
        s = str(n)
        return any(s[i]!='0' and isprime(int(s[:i])) and isprime(int(s[i:])) and isprime(int(s[i:]+s[:i])) for i in range(1, len(s)))
    print([k for k in range(3300) if ok(k)]) # Michael S. Branicky, Apr 05 2025