cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380949 a(n) = numerator(r(n)) where r(n) = (n/2)*(Pi/2)^cos(Pi*(n-1))*((n/2-1/2)!/(n/2)!)^2.

Original entry on oeis.org

0, 1, 1, 4, 9, 64, 75, 256, 1225, 16384, 19845, 65536, 160083, 1048576, 1288287, 4194304, 41409225, 1073741824, 1329696225, 4294967296, 10667118605, 68719476736, 85530896451, 274877906944, 1371086188563, 17592186044416, 21972535073125, 70368744177664, 176021737014375
Offset: 0

Views

Author

Peter Luschny, Feb 11 2025

Keywords

Examples

			r(n) = 0, 1, 1/2, 4/3, 9/16, 64/45, 75/128, 256/175, 1225/2048, ...
		

Crossrefs

Cf. A380950 (denominator), A380910, A380909, A019267 (asymptotic coefficients).

Programs

  • Maple
    r := n -> (n/2)*(Pi/2)^cos(Pi*(n-1))*((n/2-1/2)!/(n/2)!)^2:
    a := n -> numer(simplify(r(n))): seq(a(n), n = 0..28);
    # Alternative:
    r := n -> ifelse(n <= 1, n, (n - 1)/(n*r(n - 1))):
  • Mathematica
    Join[{0}, Numerator[FoldList[(#2 - 1)/(#2*#) &, Range[30]]]] (* Paolo Xausa, Feb 14 2025 *)

Formula

Product_{k=1..n} a(k) = A380910(n) / A380909(n).
r(n) = (n - 1)/(n*r(n - 1)) for n > 1.
numerator(r(2*n)) = A161736(n).
numerator(r(2*n+1)) = A056982(n).
numerator(r(2*n+1))/4^n = A124399(n).
denominator(r(2*n-2)) = A161737(n).
denominator(r(2*n+1)) = A069955(n).
denominator(r(2*n+1))/(2*n+1) = A038534(n).
denominator(r(2*n+2))/2 = A278145(n).
denominator(r(2*n+2))/2^(2*n+1) = A001901(n).
r(n) ~ (2/Pi)^((-1)^n)*(1 - 1/(2*n) + 1/(8*n^2) + 1/(16*n^3) - 5/(128*n^4) - 23/(256*n^5) ...).