This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A380953 #22 Apr 26 2025 05:31:17 %S A380953 1,323,3887,5183,149903,311790,777923,1327103,6718463,12446783, %T A380953 14605487,16402499,20373435,28128270,30856494,33144430,37058230, %U A380953 37380745,68661901,86755609,139557721,159954570,221294682,222538813,229159043,269108440,360590058,412621345 %N A380953 Numbers m such that the sum of its distinct prime factors and the sum of its nonprime divisors are both squares. %C A380953 Or numbers m such that A008472(m) and (A000203(m) - A008472(m)) are both squares. %e A380953 s1 is the sum of the prime factors, s2 is the sum of the nonprime divisors. %e A380953 +----------------------------+-------------------------+-----+-------+ %e A380953 | m | prime factors | nonprimedivisors | s1 | s2 | %e A380953 +----------------------------+-------------------------+-----+-------+ %e A380953 | 323 | {17, 19} | {1, 323} | 6^2 | 18^2 | %e A380953 +----------------------------+-------------------------+-----+-------+ %e A380953 | 3887 | {13, 23} | {1, 169, 299, 3887} | 6^2 | 66^2 | %e A380953 +----------------------------+-------------------------+-----+-------+ %e A380953 | 5183 | {71, 73} | {1, 5183} |12^2 | 72^2 | %e A380953 +----------------------------+-------------------------+-----+-------+ %e A380953 | 149903 | {13, 887} | {1, 169, 11531, 149903} |30^2 | 402^2 | %e A380953 +----------------------------+-------------------------+-----+-------+ %p A380953 with(numtheory):nn:=10^8:print(1): %p A380953 for m from 2 to nn do: %p A380953 d:=factorset(m):n0:=nops(d):s:=sum('d[i]', 'i'=1..n0): %p A380953 if issqr(s) and issqr(sigma(m)-s) then print(m): %p A380953 else %p A380953 fi: %p A380953 od: %o A380953 (PARI) isok(m) = my(f=factor(m), s=sum(k=1, #f~, f[k,1])); issquare(s) && issquare(sigma(f)-s); \\ _Michel Marcus_, Feb 09 2025 %Y A380953 Cf. A000203, A008472, A164722. %K A380953 nonn %O A380953 1,2 %A A380953 _Michel Lagneau_, Feb 09 2025 %E A380953 More terms from _Jinyuan Wang_, Feb 11 2025