A380956 Position of first appearance of n in A380955 (sum of prime indices minus sum of distinct prime indices).
1, 4, 8, 16, 27, 64, 81, 256, 243, 529, 729, 961, 1369, 1681, 1849, 2209, 2809, 3481, 3721, 4489, 5041, 5329, 6241, 6889, 7921, 9409, 10201, 10609, 11449, 11881, 12769, 16129, 17161, 18769, 19321, 22201, 22801, 24649, 26569, 27889, 29929, 32041, 32761, 36481
Offset: 0
Keywords
Examples
The terms together with their prime indices begin: 1: {} 4: {1,1} 8: {1,1,1} 16: {1,1,1,1} 27: {2,2,2} 64: {1,1,1,1,1,1} 81: {2,2,2,2} 256: {1,1,1,1,1,1,1,1} 243: {2,2,2,2,2} 529: {9,9} 729: {2,2,2,2,2,2} 961: {11,11} 1369: {12,12} 1681: {13,13} 1849: {14,14} 2209: {15,15}
Crossrefs
Programs
-
Mathematica
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0]; q=Table[Total[prix[n]]-Total[Union[prix[n]]],{n,1000}]; Table[Position[q,k][[1,1]],{k,0,mnrm[q+1]-1}]
Formula
After a(12) = 961, this appears to converge to prime(n)^2.
Comments