cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380957 Sorted positions of first appearances in A380955 (sum of prime indices minus sum of distinct prime indices).

This page as a plain text file.
%I A380957 #6 Feb 16 2025 13:36:29
%S A380957 1,4,8,16,27,64,81,243,256,529,729,961,1369,1681,1849,2209,2809,3481,
%T A380957 3721,4489,5041,5329,6241,6889,7921,9409,10201,10609,11449,11881,
%U A380957 12769,16129,17161,18769,19321,22201,22801,24649,26569,27889,29929,32041,32761,36481
%N A380957 Sorted positions of first appearances in A380955 (sum of prime indices minus sum of distinct prime indices).
%C A380957 Also appears to be sorted firsts of A374248.
%t A380957 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A380957 q=Table[Total[prix[n]]-Total[Union[prix[n]]],{n,1000}];
%t A380957 Select[Range[Length[q]],FreeQ[Take[q,#-1],q[[#]]]&]
%Y A380957 For length instead of sum we have A151821.
%Y A380957 Counting partitions by this statistic (sum minus sum of distinct parts) gives A364916.
%Y A380957 Sorted positions of first appearances in A380955.
%Y A380957 The unsorted version is A380956.
%Y A380957 For product instead of sum we have sorted firsts of A380986.
%Y A380957 The multiplicative version is A380988, unsorted A380987, firsts of A290106.
%Y A380957 For prime multiplicities instead of prime indices we have A380989, firsts of A380958.
%Y A380957 For factors instead of indices we have A381075, see A280286, A280292.
%Y A380957 A000040 lists the primes, differences A001223.
%Y A380957 A005117 lists squarefree numbers, complement A013929.
%Y A380957 A055396 gives least prime index, greatest A061395.
%Y A380957 A056239 adds up prime indices, row sums of A112798, counted by A001222.
%Y A380957 Cf. A000720, A046660, A071625, A075255, A116861, A136565, A156061, A178503, A175508, A325033, A366528, A366749, A374248.
%K A380957 nonn
%O A380957 1,2
%A A380957 _Gus Wiseman_, Feb 13 2025